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Welcome,  so,  in the last  lecture we have seen the  Ford-Fulkerson method for computing

maximum flow, so, we will continue from there.

(Refer Slide Time: 00:37)

Today, we will see Edmond-Karp algorithm for computing Max flow. So, let us recall the

runtime of Ford-Fulkerson algorithm is big O star sorry big O of value of Max flow times

number of edges for integral capacities. So, this is not a polynomial time algorithm. So, this

runtime  is  pseudo  polynomial  because  it  the  runtime  is  proportional  to  the  size  of  the

maximum flow.

But the inputs are these numbers and whenever you have a number, the number of bits to

represent that number is log of this. So, the size of the input is size of E times log of f star.

This is the size of the input at most the size of the input. And hence with respect to the size of

the  input  this  runtime  is  exponential.  So,  these  sort  of  running  times  are  called  pseudo

polynomial running time.

Whenever  we have an integer  for polynomial  running time,  we want running time to be

polynomial in the log of the value of this input integers which is not in the case. So, recall



that Ford-Fulkerson method leaves the it does not specify which flow path to pick in the

residual graph. And Edmond-Karp provides a particular method to pick a flow path in the

residual  graph  to  augment  the  current  flow  which  results  in  fast  fast  computation  of

maximum flow.

And the runtime will be polynomial it does not depend on the maximum flow. But before that

let us ask is the analysis of Ford-Fulkerson tight because it is a worst case and it is a big O

bound. So, is it tight? So, is O( f∗ E)  tight. That means do we have an example where the f

Ford-Fulkerson method, indeed takes  O( f∗)  many iterations. And yes, indeed, we have

and we have already seen this example so, S to t A B.

So, suppose the capacities of these edges s to A are these are some very big numbers C, C is

very large. And so, the value of the maximum flow is 2C. But if the Ford-Fulkerson method,

picks the first flow path, S to A to B to t. And now in the residual graph there will be an edge

from B to A and in the second iteration. If it picks S to A to C and in the residual graph after

two iterations, this A to B edge again will appear and if it again speak S to B to t.

So, If in every odd iterations it if it  picks A to B to t the blue path and it in every even

iteration if it picks red path. Then you will see that in each iteration the value of the flow

current flow increases by only 1. And hence to reach 2C, to reach the maximum flow, it will

require size over value of maximum flow many iterations. So, in this example,  the Ford-

Fulkerson algorithm takes value of f ∗  many iterations. 
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So, this analysis of this Ford-Fulkerson method is indeed tight. So, now let us see, what is the

Edmond-Karp method? So, Edmond-Karp method, it simply specifies which flow path in the

residual graph to pick in each iteration and it says that pick are pick A s to t path having

minimum number of edges. So, let us see in this example how it will happen, s to A, B, t.

So, in the first iteration itself the Edmund-Karp algorithm is not allowed to use S to A to B to

t path because it involves 3 edges, whereas there is a path A to t or s to B to t which involves

few edges. So, it picks one of the path involving minimum number of edges. So, whenever,

when  I  am  picking  the  flow  path  to  augment  a  flow  in  the  residual  graph,  I  am  not

considering the capacities.

I am just picking the shortest path in terms of the minimum number of edges that it contain.

So, the first part that it picks is s to A to t and it pushes C amount of flow and the resulting

residual graph will look like this. There will be a edge from A to s C, A to t C. And in the

next iteration again there is only one path and it pushes C amount of flow along the bottom

path and hence it in two iterations it finds the maximum flow.

So, what we will show is that for any maximum flow problem this method of picking the path

leads to a polynomial number of iterations to reach the maximum flow value. So, towards

that so, let us define some notation, so, let  f i  be the flow after i iterations. And so, in

particular f 0  of every edge e is 0 and Gi  is the residual graph of f i , so, in terms in

particular G0  is G. 

Now, for each vertex we define what is called a level of the vertex intuitively speaking what

will basically show is that and any edge cannot be reversed many times. For example, if some

edge disappears because that is,  it  is saturated in from the residual graph. Then, if at the

reverse edge is there, if again in the later iteration, if any flow is pushed along the reverse

edge then that edge will reappear?

What will bound is we will show that any edge cannot appear and reappear too many times.

Any edge can reappear at most size of v. The number of vertices is size of v that many times

if it has n vertices, the each edge can reappear at most n times. That is the clean and we will



augment it with the fact that whenever we push a flow we at least 1 edge from the flow graph

disappears.

Now, in each iteration at least, 1 edge disappears and each edge can disappear at most say

|V|×|V| . So that way, the number of iterations will be twice size of e number of edges in

the residual graph times the number of vertices that is the high level idea. So, towards that let

us define for every vertex v let level high of v is the unweighted shortest path distance from s

to v in Gi .

That means look at the shortest path from s to v in terms of the number of edges that the path

contains and that value let us call the level of that vertex v.
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So, if v is unreachable from is s in Gi  then we define level i of v to be infinity. So, first we

prove that this level is a increasing function. Level only increases with i level of every vertex,

so, first lemma level of level i of v is greater than equal to level i – 1 of v for all vertex v and

for all i greater than 0. Proof, so, let i be any and v be any and will prove by induction on

level i of v.

Not i not integer i, will induction will do induction on the level i of v. So, if level i of v is 0

then v must be an s, so, base case level i of v if it is 0 that is that can only be possible if v is s

and then level i – 1 of v is also 0. And hence the inequality holds so the base case holds true.

So, inductive hypothesis so, assume the statement for every vertex u with level i of u less

than level i of v, that means what?



That means that is, if level i of u is less than level i of v then a level i of u is greater than

equal  to level  i  –  1  of  u  This  is  our assumption,  inductive  hypothesis,  this  we get  from

inductive hypothesis. 
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Now there are two cases, couple of cases, so, if so now, to show that level i of v this is greater

than equal to level i – 1 of these 2 show. So, we will take some cases on v so, easy cases first.

So, case I v = s, if v = S then level is 0, irrespective of i and hence the equality holds the

inequality holds. Case II there is no path, no s to v path in Gi  then level i of v is infinity

and in this case also the inequality holds.

Otherwise, there is a path, so, otherwise let there is a path from in path from s to v in Gi .

And suppose u is the last vertex see this is the shortest path, shortest path containing in terms

this is the unweighted shortest path. This is the s to v path containing the least number of

edges and u is the vertex just previous to v. So, level i of u is level i of v – 1 and in particular

hence level i of u is strictly less than level i of v.

Now hence, from inductive hypothesis, we have level i of u is greater than equal to level i – 1

of u, Now, we will show basically, we will show what that level i – 1 of u this is greater than

equal to level i – 1 of v – 1. So, if we show this then we get what we want because level i of u

is nothing but level i of v – 1. So, this level i of u will be, is equal to level i of v – 1.



And if we can show that level i – 1 of u is this greater than equal to level i – 1 of v – 1. Then

we can test this and we get level i of v is greater than equal to level i – 1 of v.
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So, here also we make couple of bits  some sub cases,  so,  we need to  go to we need to

consider Gi –1 . So, we will show this so, for that I need to so, in this inequality involves i –

1 at level, so, i need to consider level i – 1 the graph i – 1. So, if this edge u v is present in

Gi –1  then again by shortest path property we have level i – 1 of v is less than equal to

level i – 1 of u + 1 which is exactly what we need to show that level i – 1 of u is greater than

this.

So that is level i – 1 of u is greater than equal to level i – 1 of v – 1. So, if this edge u v which

is present in Gi  if it was present in Gi –1  also then it is very easy. Otherwise, if u v is

absent in Gi –1  then you see that this edge u to v was not there in Gi –1  but it has come

in Gi  this edge u to v. Now, how can an edge appear? It is possible only if there was an

edge from v to u in Gi –1 . So, if u to v is absent in Gi .

Then v to u must be present in the ith augmenting path. It is not only present the augmented

path also should contain this then only this edge the augmented path must also contain v to u

edge. Then only we say edge u to v can reappear but the here we are using the fact that the

Edmond-Karp algorithm only uses only augments shortest paths. So then, this u to v to u edge

is A is contained in S to t sort a shortest path.



So then s to t shortest path in Gi –1 look like this it starts from s and it goes to v then it uses

this edge and then it reaches t. So then, this is exactly what I need to get that level i – 1 of u is

nothing but level i – 1 of v + 1 which is greater than equal to level i – 1 of v – 1. So, this

proves the statement now in both the subscripts then what we have is that. Now, if we patch

this level i of v is level. So, here in this case, we had this inequalities level i of u is level i of v

– 1.

So, level i of v is level i of u + 1 and this is greater than equal to this is because of induction

hypothesis, i – 1 of u + 1 and is greater than equal to level i – 1 of v. So, this concludes the

proof of this lemma. Hence the shortest path augumented shortest path distance from s to

every vertex increases it did not decrease. And what we will show in the next lecture that

between every disappearance this level increases by at least two.

And hence the number of iterations will be bounded because when the algorithm stops, the

algorithm stops only when t is unreachable. So, we will continue from here in that next, let us

play. Thank you.


