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Counting Independent Sets of a Graph

Welcome, in the last place, we have started Markov Chain Monte Carlo method and we will

see the  demonstration  of  this  method for  designing uniform samplers  or  almost  uniform

samplers for independent sets.

(Refer Slide Time: 00:41)

So, Markov Chain Monte Carlo and using that we will design and FPAUS, fully polynomial

approximate  uniform sampler  for  independent  sets.  But  before  that  let  us  discuss  where

Markov Chain comes into picture. So, the idea so, the goal is to design a uniform sampler

from U so, goal is to design almost uniform sampler from some underline set omega. So, for

that  we  design  a  Markov  Chain  with  state  space  omega  in  such  a  way  that  uniform

distribution is the only stationary distribution of the Markov Chain.

And the Markov Chain is a periodic and having small mixing time set t mix epsilon. So, if

this is the case then we run the Markov Chain for t mix epsilon time and the state, that x t will

be distributed uniformly close to uniformly it is epsilon closed in total variation distance to

uniform distribution across all state space. So, the algorithm or the sampler is simply run the

Markov Chain for t≥tmix(ϵ ) time and output the t-th step. 



So, for independent sets we have already seen and Markov Chain on independent set, whose

stationary distribution is the uniform distribution over independent sets. So, let us recall that

so, we have already seen a Markov Chain on independent set whose stationary distribution is

the uniform distribution. 
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So, if we run that Markov Chain for t step, the running time is dominated by t. So, we have a

sampler we sample we uniform samples but again, so, using this Markov Chain assuming t

mix is  small  enough. So,  with t  mix time we can draw an independent set  uniformly at

random and again apply the Monte Carlo method but what if or how do we show? That the

number of independent sets is not too small compared to the sample space. 

To apply estimator theorem recall that we suppose we are estimating size of S and we are

sampling from omega. Then this should be bounded away from 0 and hence for Monte Carlo

method  to  be  successful  this  favourable  outcome should  be  considerably  large  than  the

sample space. So, you cannot just simply pick arbitrary sub set of vertices and check whether

it is independent set or not.

So, to tackle that what we do is this approach. So, let so, in DNF counting also we face this

problem. And what we did is that instead of sampling any arbitrary assignment of Boolean

variables,  we  sampled  from a  suitable  sample  space  suitable  omega  which  contains  the

solution. The same approach is followed here but here the idea is little more non trivial. So,

let us see that so, let G=(V ,E) be any graph with each set E={e1 , e2 ,…,em}.



What we do is that we first we define  Ei to be the first i edges  {e1 ,…,ei}. First, in with

respect to this numbering and Gi is the induced graph V and with this edges Ei. So, the all

vertices remain but only edges  Ei is there so, for using this. We construct this sequence of

graphs G0⊂G1⊂…⊂Gm simply because E0⊂E1⊂…⊂Em.

All graphs have the same set of vertices but the edges are getting added one by one. Let I (Gi)

be the set of independent sets of Gi. And our goal is to estimate cardinality I (Gm). And what

we  know?  We  know  I (G0),  in  G0 there  is  no  edges.  So,  all  subset  of  vertices  is  an

independent set. This is equal to  2n. Now, we write cardinality  I (Gm) as cardinality  I (G0)

times cardinality  I (G1) by cardinality  I (G0) times cardinality  I (G2) by cardinality  I (G1)

cardinality I (Gm) by cardinality I (Gm– 1). 

And let us call these numbers, let us define r i to be cardinality I (Gi) by cardinality I (Gi –1).
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So, cardinality I (Gm) is cardinality I (G0) times ∏i=1

m
r i and cardinality I (G0) is 2n ∏i=1

m
r i.

So, to estimate I (Gm) cardinality I (Gm) it is enough to estimate r i for all i = 1, 2 to m. Also

observe that each I (Gi) is a subset of I (Gi –1). This is because Gi – 1 is a sub graph of Gi. So,

this implies that each r i is in between 0 and 1 these are fraction. 

So, to approximately estimate cardinality I (Gm) because if we can exactly compute what is

cardinality I (Gm). Then we can solve the independent set problem which is quite unlikely to



be solved in polynomial time. So, what we do is that if we do an approximate counter, so, we

assume that we can draw approximately uniform samples epsilon by  6m uniform samples

from I (Gi).

So, the idea what is the idea? The idea is to draw epsilon by  6m uniform samples from

I (Gi –1). 
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And check what fraction of them belong to  I (Gi). So, draw any almost uniform sample or

approximately uniform sample from approximately uniform independent set  of  Gi – 1.  And

check whether it is an independent set of Gi or not now and this approach will work because

will show that we will show each ri is bounded away. That is again important, so, we will

show this. So, for that now let write this formally in a Lemma.

There  exist  so,  suppose,  assuming  or  almost  uniform  sample  or  approximately  uniform

samples from  I (Gi) for each i. There exists Markov Chain Monte Carlo method or using

Markov Chain will do the sample sampling and once we have samples there exist a Monte

Carlo method for estimating r i using cm
2

ϵ 2
ln(2 mδ ) many ϵ

6m
 uniform samples.

So, there is no, there exists a Monte Carlo method for estimating r i using this many uniform

samples using and this gives  ( ϵ
6m

, δ
m

) approximation of  r i.  Proof, so, again we will  first

begin with showing r i is greater than equal to half. So, for that we observe that look at this set



I (Gi –1)∖ I (Gi). So, this is the set of all independent sets of Gi – 1 which is not an independent

set of Gi so, this to I (Gi). 

So, there is a difference on only this edge, so, suppose e i is {u , v }. So, if i take an independent

set of Gi – 1 which is not an independent set in Gi then both u and v must have been picked. So,

an independent set W we can map it to an independent set W ∖{u} because this sets this picks

both u and v. So, this is an injective map. Injective mapping or one to one mapping that

means cardinality I (Gi –1)∖ I (Gi) is less than equal to cardinality I (Gi).

But because  I (Gi –1) is a subset of  I (Gi) we have this is cardinality  I (Gi –1) – cardinality

I (Gi) less than equal to cardinality  I (Gi). This is cardinality  I (Gi –1) is less than equal to

twice cardinality I (Gi).
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That this implies that cardinality I (Gi) by cardinality I (Gi –1) this is greater than equal to half

but left hand side is nothing but r i means ri is greater than equal to half. So, next we show

that if we can estimate r i within or almost uniformly from I (Gi) then we can sample or we

can estimate I (Gi) we can estimate r i. So, suppose we draw one ϵ
6m

 uniform samples from

I (Gi –1). And again, what is the Monte Carlo method?

Again, simple see what fraction of them belong to I (Gi) and that is my estimate. That is r if k

of them belongs to ij then k by l is my  r i. So, let us define for that  X i is 1 if ith sample



belongs to i or let me write j here is jth sample belongs to I (Gi) and 0 otherwise. So, what we

have is because it is an almost uniform sample probability that X j=1. This is the probability

that a jth sample belongs to I (Gi). 

And jth sample is an ϵ
6m

 uniform from I (Gi –1). So, this – I (Gi) by I (Gi –1) this is less than

equal  to  ϵ
6m

.  Because  since  total  variation  distance  is  ϵ
6m

 that  means  that  is  why  the

probability of any event differs from the actual probability by  ϵ
6m

.  But this implies that

probability of X j=1 is nothing but expectation of  X j – its cardinalities and this is  ri this is

less than equal to ϵ
6m

.

But this is nothing but summation j = 1 to l you see this holds true for all j this is for all j in 1

to l. This is 
X j
l
– ri, this is ϵ

6m
. And this is our estimate this is r i tilde. This is the output of

the algorithm,
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So, expectation of ~r i– r i mod this is less than equal to ϵ
6m

. So that means that expectation of

~ri
ri
– 1 this is less than equal to ϵ

6m
r i but this is less than equal to ϵ

3m
. Since r i is greater than

equal to half. So, this implies that expectation of  ~r i is greater than equal to  r i –
ϵ
6m

. This

follows from here that if expectation of ~r i  deviates from r i in absolute value within ϵ
6m

.



That means expectation of ~r i is at least  r i –
ϵ
6m

 which is for large enough m this is greater

than equal to one third. So, for Chernoff Bound to be applicable to be useful expectation also

should be bounded away from from 0.  So, this makes hence this makes Chernoff bound

useful. So, next, in the next class we will use. This will continue this proof and we will see

how using this we can design an approximate counter for counting the independent sets of a

graph. Thank you.


