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DNF Counting (Continued)

Welcome in the last class, we have seen an algorithm for DNF Counting and we claim that it

is an FPRAS. So, we will do the analysis in today’s class.
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So, DNF counting; so, let us recall we designed two sets so, the clauses was C1 ,…,Cm for

j∈[m ]. We defined S j is the set of satisfying assignments of the clause C j and then we define

this set U which is  ( j , a) j∈[m ] ,a∈S j this set. And you will find another set S which has

which is one to one correspondence to the solution set of this DNF formula. This is j, a such

that ( j , a) j∈[m ] ,a∈S j and for all  i∈{1 ,…, j – 1}, a does not belong to Si.

And the idea is we sample an element from u uniformly at random and check whether it

belongs to S or not.  How to sample U, sample element from U? For that so,  sample an

element  uniformly  randomly  from  U.  What  was  the  recipe?  Pick  j  with  probability

proportional to S j, by sum of cardinality S j and sum of cardinality S j is cardinality U.

So, pick a j proportional to S j first and then pick a solution a uniformly randomly from S j.

Now, once a sample is picked from U, we need to check whether it belongs to yes or not that

is easy.
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So, checking so, a sample j, a belongs to S if and only if a does not belong to  Si for all

i∈{1 ,…, j – 1}. That means this assignment a does not satisfy the clauses C1 ,…,C j –1 that is a

does not satisfy C1,…,C j –1 which can be checked very easily. So now, next we show that it

is indeed and the output is indeed an epsilon delta approximation. So, for that we first prove a

general estimator theorem and we will apply this theorem in our setting.

So, theorem is called estimated theorem. So, suppose S is a subset of some sample space and

we want to estimate size of S using samples drawn uniformly randomly from Ω. And also

suppose we have size of S is not too small compared to the size of  Ω, it is bounded away

from 0. The size of S by size of Ω this is greater than equal to ρ  which is greater than 0.

It is bounded away from 0, it is not very close to 0 like our naive approach for DNF counting,

where we try to sample from all set all assignments. Then the Monte Carlo method provides

epsilon delta approximation. So, what is the Monte Carlo method? You draw l samples and

see how many of them belongs to S? Suppose k of them belongs to S, output size of S as

k
l
|Ω|, suppose cardinality omega is known. 

Then this output is an (ϵ ,δ ) approximation if it draws at least 
3

ρ ϵ 2
ln( 2δ ) samples. 
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Proof, so that means l, l is the number of samples we draw. So, l= 3
ρϵ 2

ln( 2δ ) and Y i let us

define for i∈[ l], Y i is 1 if i-th sample belongs to S and 0 otherwise. And define Y=∑i=1

l
Y i it

is the number of samples that fall into S. So,  E [Y ]=∑i=1

l
E [Y i]. Now, apply linearity of

expectation, an expectation of Y i is probability that i sample belongs to S and that is at least

rho.

So, this is ρ l. Now, we have probability that what is the estimate? Y many samples has fallen

in S. So, Y
|Ω|
l

, l many samples has been drawn. So, this is the estimate and this differs from

size of S is absolute difference is greater than equal to ϵ  size of S.

What is this probability? We write probability this is |Y –l
|S|
|Ω|

|. This is greater than equal to

ϵ|S| l|Ω|. Now, see that Y is a sum of Bernoulli random variables and this is in Chernoff

bound form. So, this here and line can be inserted this is summation expectation of Y is size

of S by size of omega, i = 1 to l this is l times size of S by size of omega.

So now, it is it can be clearly seen that this is or let me write this is probability that mod of Y

minus expectation of Y. Y deviates from it is expectation by more than ϵ E[Y ]. This is a two

sided version.
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This is less than equal to  2e
−ϵ 2E [Y ]

3. So, this is  2e
−ϵ 2ρ

3 because expectation of Y is greater

than equal to ρ l . And now, if we pick l equal to this that means for l= 3
ϵ2 ρ

ln( 2δ ) this is less

than equal to delta. So, what is this concludes the proof of estimator theorem.

So, the sample complexity of our DNF counting algorithm is 
3

ϵ 2ρ
, ρ  is the bound what is the

size of favourable outcome as compared to the size of sample space. Now, here for DNF

counting this turns out to be this is size of S by size of U from U we are sampling so, U is like

omega and S is the favourable outcome and this is greater than equal to 
1
m

.

So, ρ  is like 
1
m

 so, this is put ρ= 1
m

. So, 
3m
ϵ 2
ln(2δ ) so, this is the sample complexity of our

DNF counting algorithm. So, our next one.
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What we do is that we have seen that we to apply Monte Carlo algorithm, Monte Carlo

method what we need is the ability to sample uniformly from some distribution. So that is the

core thing of Monte Carlo method. So, the core requirement to apply Monte Carlo method is

the ability to sample uniformly randomly from some appropriate set namely omega. So, this

is our next problem that is approximate sampling.

So, often we will not be able to do draw uniform samples but we will see that almost uniform

or close to uniform samples are often enough. So that is our next objective, approximate

sampling. So, what is approximate sampling? So, let us call that fully polynomial almost

uniform sampler FPAUS. Definition so, our sampling distribution  2Ω that means set of all

events 2Ω and P is a probability space is called an epsilon uniform sample.

If the total variational distance between this probability P and the uniform distribution μU is

at most epsilon where μU is the uniform distribution over Ω. A sampling algorithm so, this is

called these are ϵ  uniform samples.
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A sampling algorithm is called a fully polynomial almost uniform sampler if FPAUS if for

every input instance X and  ϵ  greater than 0 it outputs and epsilon uniform sample in time

polynomial in size of X and  ln( 1δ ).  So, next what we will do is that? We will see how

Markov Chain can be used effectively to design FPAUS and the corresponding technique is

called Markov Chain Monte Carlo method.

So, our next topic is Markov Chain, Monte Carlo method is often abbreviated as MCMC

method. So, we see this method on the problem of counting number of independent sets. So,

what is this problem? What is an independent threat? So, suppose we are given an undirected

graph and we need to output the number of independent sets in the graph, not necessarily

maximum independent sets.

For example, if I take a graph A, B, C then the independent sets, independent set is a subset

of vertices having no age bit in between them. So, for example A and C form an independent

set and that is the maximum independent set but these are not the only independent set. For

example all the singleton sets A, B, C they also form independent sets and also the empty set

of vertices also form a independent set.

So, the number of independent sets for this instance is 4. So, in the next class we will design

FPAUS and for independent sets which can sample independence uniformly at random. And

using that we will see how this can be used to estimate the number of independent sets in a

graph. So, we will stop here today.


