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DNF Counting

Welcome. So, in the last class we started Monte-Carlo methods and explained that method on

estimating  the  value  of  π .  In  today's  class  we  will  see  more  examples  of  Monte-Carlo

methods for designing algorithms.
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So, today's topic is Monte-Carlo method. So, using Monte-Carlo method, we will design what

is called fixed fully polynomial randomized approximation scheme FPRAS for DNF counting

problem. So, this is our second example. So, what is DNF counting problem? DNF stands for

disjunctive normal form. So, what is disjunctive normal form? It is like a Boolean formula

written in logical OR of AND of literals.

For example, so suppose x1∧ x̄2∧x3∨x2. So, this is an OR of AND, so this is a formula in

DNF form disjunctive normal form. Now, what is the DNF counting problem?
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So, go in the next page, DNF counting problem. What is input? Input is Boolean formula in

disjunctive normal  form a Boolean formula f.  Output is  a  number we want to  count  the

number of satisfying assignments output of f. So, for example, in this formula if what are the

satisfying assignments? That x1 is true x2 is false x3 is true. It is one satisfying assignment.

Another setting showing assignment is  x1 is true,  x2 is true,  x3 is false. Another satisfying

assignment  is  x1 is  false,  x2 is  true,  x3 is  false.  So,  this  formula  f  has  three  satisfying

assignments. Now, we will see later that you know we do not expect to have a polynomial

term algorithm to output the exact count of number of solutions. We do not expect to have a

polynomial time algorithm to exactly count the number of satisfying assignment of our DNF

formula.

Why we do not expect? Otherwise, we will have a polynomial time algorithm for CNF-SAT.

So, this problem we will discuss more in NP completeness but for the time being this CNF-

SAT is a problem where the input is a Boolean formula in OR of AND format. So, in CNF-

SAT the input is Boolean formula f in AND of OR clauses OR literals. And we want to know

if f is satisfiable.
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Now, for this we do not expect to have a polynomial time algorithm. And then how this

problem is connected to DNF counting? So, CNF formula f over n variables is satisfiable if

and only if f bar which is a DNA formula. If f is a CNF formula then f̄  is a DNF formula f̄

has 2n satisfying assignments has less than 2n satisfying assignment.

Hence, if we can exactly count the number of satisfying assignments of a DNF formula using

that we can solve the CNF-SAT problem. For which you do not expect to have a polynomial

time algorithm. So now, next, what we will do? Is that we will design a FPRAS for DNF

counting problem, so, the naive approach. What is the naive approach? Naive approach is

pick a random assignment from 2n assignments.

Uniformly at random not pick few random assignments from  2n assignments uniformly at

random. And check what fraction of them satisfy the formula? Indeed, this was the approach

for estimating the value of π . The problem with this approach is that this approach will fail if

the number of satisfying assignments is too small, say one or two or something like that.

And  if  the  number  of  assignments  is  say  one  then  the  algorithm is  supposed  to  output

correctly. Because if it is an FPRAS recall, the requirement is probability that A(X) –V (X ),

V (X) is the value of the solution, value of the problem, value of the instance. In this case,

this is the number of solutions and A(X) is the output of the algorithm. This is supposed to

be within ϵ  times value of V (X) with probability at least 1– δ .



So, for small  δ  if  V (X) is  very small,  say 1 or 2.  Then  A(X) essentially has to output

correctly and this is where this approach fails. This approach let me write this approach, fails

if the formula has only a few satisfying assignments.
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So now, we see the second approach which will work. So, what we do is that? Let C1 ,…,Cm

be the m AND clauses recall that the formula is given in DNF form and it is a DNF means it

is OR of AND clauses each  C1 ,…,Cm is AND of some literals.  So,  suppose for  j∈[m ].

Suppose C j contains t j literals. So, let S j be the set of all satisfying assignments of C j. Then if

it contains t j literals then on those t j literals, we can fix exactly one way.

Those  t j literals can be fixed exactly one way to solve to satisfy  C j but other remaining

literals can be set arbitrarily. It is like if there is a clause x1 x̄2. And then to satisfy this clause

x1 must be set to true and x2 must be set to false. But the remaining variables say x3 , x4 ,…, xn

can be said arbitrarily. So, the number of satisfying assignments is very easy to compute this

is to 2n – t j. 

Now, we define so, for each 1 clause, the number of satisfying assignments is very, very easy

to compute but they can have overlapped same as solution may satisfy many clauses. And

that  is  where  the  difficulties  we  should  not  be  doing  over  counting.  So,  to  count  that

approximately we define some quantities, we define this set U to be ( j , a), where j∈[m ] and

a is a satisfying assignment. 



So,  same assignment  a  can satisfy many clauses.  And they are  coupled with that  clause

number and put it into U. So, size of U is sum of size of S j. But what we want to count is? S

which is union of S j. So, we want to count this so, let us call union S j. This is the goal. So,

for that we define another set S which is in one to one correspondence with union S j. This is

( j , a) such that j∈[m ], a∈S j and for all i in 1 to j – 1, a∉Si. 

That means an assignment a satisfies clause  C j but it  does not satisfy any of the clauses

C1 ,…,C j –1. So now, it is now clear that S cardinality S is same as cardinality S=∪ j=1
m S j. So,

our modified goal is to count the size of S. What is cardinality S?
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So, for that first, we observe that we do not have the problem with that we had initially that

the favourable outcome is too small than the sample space. This was the case, we were say in

the naive approach we are sampling from a sample space of size 2 to the n but the favourable

outcome can have a constant number of elements. So, what we do is? The idea is, idea sample

from u and check what fraction of samples fall in S.

Now,  for  this  approach  to  succeed  and  for  this  approach  to  do  not  fail  like  our  naive

approach, is that size of s should be considerable with respect to the size of U. But this is easy

to check that size of S by size of U is greater than equal to 1 over m. Because size of S is

same as union of size of S j and size of union is at least  
1
m

 of the size of the maximum set

maximum S j. So, this is this follows.



So now, we have hope and now the approach follows in the same path as estimating π . Only

I need to say how we can sample from U sample uniformly from u? How do you do that? So,

we pick first j in 1 to m uniformly at random, pick j with probability. Whichever j has many

solutions to sample from uniformly random from u that j should have more probability.

So, the probability of picking j is should be proportional to size of S j. So that means we pick j

with probability size of S j by summation size of S j j= 1 to m. And after picking j we pick a

solution  a  from  S j uniformly  at  random,  how?  Because  S j is  the  set  of  all  satisfying

assignments  of  a  clause  C j and  clause  is  the  AND of  some literals.  So,  those  variables

involved in the literals has to be set only one way.

And the other variables we set true or false with probability half. So, this way the probability,

let us check that you know that some element  ( j , a) is picked. So, what is the probability?

That  ( j , a) is  picked  is  the  probability  that  first  j  is  picked  which  happens  with  this

probability 1 to m. And once j is picked, it has size of  S j m solutions, so one of them is

picked randomly this. This is and summation of size of S j is U this is 1 over cardinality U. 
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So, again so, hence the algorithm means sample l points from U uniformly randomly. If k

points belong to S then output that means 
k
l

 fraction of U belongs to S. So then this output 
k
l



of size of U. And this is an FPRAS. So, for that so, we will show that claim. The algorithm

for DNF counting is an FPRAS. So, this proof we will see in the next class. Thank you.


