Selected ToPics in Algorithms
Prof. Palash Dey
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Module No # 05
Lecture No # 25
Shuffling Cards

Thank you welcome we have been seeing the application of Markov Chain and particular
random walk on graphs. So in the last class we have started studying the example of shuffling
cards.
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When we observe that the Markov Chain for shuffling cards as unique stationary distribution and
the Markov Chain converges to it and what was the Markov Chain? So let us recall this is a
permutation 7,,7,,...,7T, and we pick a random card say 7; and put it at the top here, so basically
shift it here. And by symmetry; so what is the unique stationary distribution? By symmetry the
uniform distribution overall n factorial permutations is the unique stationary distribution of the

Markov Chain.

Now hence if the mixing time is small after that many number of steps the distribution of X, the

t-th state of the Markov Chain will be very close to uniform distribution so that is the idea.
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So now what is the mixing time? How many times we need to shuffle the card? Again let us the
idea the technique is similar to Markov Chain on the cycle so we use coupling technique.
Basically we take 2 copies of the Markov Chain X:(Xi)iew and YZ(YI-),-QN. As usual one
Markov Chain starts at stationary distribution hence it will remain at stationary distribution. So

let Y start at stationary distribution that is Y, is distributed according to the stationary

distribution.

Hence Y is also distributed according to 7 for all i€ IN ; and X, and X start at arbitrary state. So
we define the coupling now; we define the following coupling between X and Y what is that
coupling? That Pick up position j uniformly randomly from n.

(Refer Slide Time: 08:54)
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We move the jth card of X, is a computation of jth card ¢ of X, to the top position to obtain X,
that is how this this Markov Chain is defined; you Pick a card uniform layer random jth cards
and put it in the top. Next we also move for Y also I need to perform the same task but instead of

Picking a position j uniformly random we in Y also we Pick that cards here and move at the top.

So anyone who is looking only at the Y process it is also one card from n cards is picked
uniformly at random and put in this in the top place. We also move the card ¢ of Y, to the top
position to obtain Y, ;. So what is the process let us pictorially draw it so here is X, how it look
like it is a permutation let us call it sigma because you using 7T we typically denote the stationary

distribution.

Suppose HZ(G(1),6(2),...,G(j),...,ci(n)) and one card one position is picked uniformly at
random and moved at the top place. Suppose this is the card ¢ then X,,; is what this card ¢ then
o(1),0(2) and rest. For why what you do is that Y, it is some other
(G'(l),G’(Z),...,G'(j),...,G' (n)) here also the you move the cards here at the top so why t+ 1 is ¢

sigma prime 1 and so on.

So here also in both the cases you see that if you look at the individual Markov Chain they are
following their right distribution in both X and Y if you look one process either X or Y. In each

case one of the cards is speed uniformly at random and placed at the top. And of course this is



when so this is followed when X and Y as not met. And of course if X and Y as met this is also

the same so no problem to write this.

So what you observe is that? By this definition itself we observe that X and Y always move
together if they have met. And on the distribution of Y is stationary distribution so let tau be the
time that they made first. So when will X and Y will meet first of course when all of the cards
have been seen.
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So if all the cards in the deck all the in cards are picked at least one then X and Y has met. So we
have n cards and we are picking one card uniformly at random; in every iteration in every step.
So how many steps in expectation are required to see all the cards, this is the classical coupon
collector problem and we have seen that the expected time to see all the cards is less than equal

to nlnn+c it is order in line in nlnn+c.

So let us do it the probability that some specific card say ¢ prime is not seen after nlnn+c steps

is 1—E is the probability that it is not seen in one draw and I am spending nlnn+c steps. So this

—C

n
is (1—1) this is less than equal to e ' is e ™" this is € . Hence by union bound the

n

probability that all cards are not seen after n learning + ¢ n draws or steps is at most e “. So

hence to make this probability less than € we should make ¢ to be In (%)
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So hence for t>nlnn+n ln(%) we have probability that X, #Y, this is less than equal to epsilon.
Now by coupling lemma we know that this is the total variation distance d,,[X,, 7] which is
total variation distance between X, and Y,. Because distribution of Y, is 7 and this is the less

than equal to probability that X, is not equal to Y, this is less than equal to epsilon.

Hence the mixing time of the Markov Chain is at most nlnn+nln (%) So after this many steps
all cards the state X, is one of the permutations with probability one over n factorial minus at

most €. So this probability is very € close to uniform distribution in total variation distance. So
these are the some of the applications of random walk on Markov Chains.
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Next we see some more concepts of Markov Chain which are called hitting times, commute time
and cover time. So it is like you know from state i what is the expected number of step to hit
another state g that is sort of the hitting time? And commute time is from 1 how many how many
steps in expectation need to reach j and come back to y that is commute time. And cover time is

from a state how; what is the expected number of steps to reach all the states as at least one.

So what are them let us say write it formally given 2 states 1 and j of a Markov Chain the hitting

time denoted by h;; is the expected number of steps that the Markov Chain takes to read j from i.
Commute time C;; is the expected number of steps that the Markov Chain takes to read j from i
and come back to i. So C;=h;+h.

(Refer Slide Time: 25:53)
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And cover time C, is the expected number of steps that the Markov Chain takes to start at i and

visit every other state at least once at least one and come back to 1 cover time C i from 1; and
cover times C=max,(, C; max of maximum of C;. Now turns out that these quantities are related
very closely related to the stationary distribution and will state some fact without proof fact. Let
P be the stationary matrix the transition matrix of a finite irreducible aperiodic Markov Chain
with stationary distribution Pi; then we have the following.
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First h; == it is like it starts at i and after leaving i what is the expected number of time number

of steps it takes to come to i. So it is not 0 it is like it start because in the first step it leaves it can



: o . . . 1
leave and then what is the next earliest j where it again comes back to i; so h;=—-. Second let

N (i,t) denote thank you the number of times the Markov Chain visits i in the first t steps then

lim N (i,t)
t=>0

=m,. So we will stop here today we will use this fact to prove some interesting result

in the next class thank you.



