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Radom Walk on Cycles

Welcome so we have been doing the random walk on Markov Chains and in the last class we

have seen a random work on the set of all independent sets of a graph. So will continue to see

more examples; of random works on graphs.

(Refer Slide Time: 00:43)

So on first example today is random walk on a cycle, so consider a cycle graph where g equal to

vertices are labeled using 0 to n - 1 and there is an edge e if and only if i is j±1 congruent n.

That means pictorially it looks like this from 0, 1 this is so this is how the graph look like it is a

cycle. Now on this graph we will define a Markov Chain and that we do like from each vertex it

goes to either side now if n is even then this cycle will be an even cycle and in that case it will

not be and even for any n this will be event cycle if n is even.

And then it will not be approved it will be periodic with period 2 so to make it a periodic what

we do is that we introduce laziness to make the Markov Chain a periodic means what? That

means let us define probabilities of self-loops to be half so from, 0 to 1 it goes with probability to



one fourth from 1 to 0 with probability one fourth and this is with probability half. Means pij is

one fourth if i≠ j and there is an edge between i and j.
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So what is the stationary distribution is the uniform distribution over ℤn. Now what we do is that

we so hence since the Markov Chain is aperiodic it will converge to the stationary distribution

but we will study how fast are the convergence. Since the Markov Chain is aperiodic it will

converge to the stationary distribution. Now we will compute mixing time and for that we will

use coupling technique. 

So what  is  the  idea  first  we  take  2  copies  of  the  Markov  Chain  so  2  copies  let  us  call  it

X=(X i)i∈ℕ and Y=(Y i)i∈ℕ 2 copies of the Markov Chain. The idea is that 1 copy we will start at

stationary distribution and the other copy you know is designed in such a way other copy starts at

arbitrary distribution.  But  it  is  designed in  such a  way that  once  they meet  in  they will  be

together thereafter.

And because one copy of the, Markov Chain who is always in the stationary distribution so the

mixing time will be the expected time to for these 2 Markov Chains to meet that is the idea. So

its  recall  in  coupling  what  is  coupling  distribution  it  is  a  joint  distribution  such  that  the

corresponding marginal have the right distribution that is what is called coupling. So what we do

is that we start one Chain at the stationary distribution.



We start  Y that  is  sample  Y 0 using stationary distribution  π  we start  Y at  π .  Now by the

definition of stationary distribution if  Y 0 is  distributed according to  π ,Y 1 is  also distributed

equivalent to π  Y 2 is also distributed according to π  and so on. 
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So we start Y at stationary distribution and start X arbitrarily that is the distribution of X0. Now

we define a coupling between X and Y as follows. If  X t=Y t for any t∈ℕ then than X and Y

move together thereafter. What do I mean by that move together that means let one Markov

Chain let us say X take the next state according to the transition probabilities and let Y copy that.

Because X follows the Markov Chain transition probabilities Y also follows that.

Otherwise at every step expensive X t≠Y t we toss a Fair coin. If head comes then X stays in it is

current state and that is X t+1=X t. That means this happens with if it comes which happens with

probability half this is the right move for X if X is concerned because you know with probability

half it is supposed to stay in its current state. But in this case let Y move so if head comes X will

constitute and Y moves to one of its neighbour with equal probability.

That means if head comes then we toss another fair coin and if we again suppose it comes then it

moves left and or if it tails come then it moves right. And again you see that Y also follows the

correct distribution of Markov Chain it moves to its one of its neighbours with probability one



fourth each. If tail come same thing repeats with the role of X and Y exchanged that means if tail

comes y stays in its current position and X moves one of its neighbours with equal probability.

Now let us see what we have achieved we will now bound in the expected number of time what

is the expected number of times? That X t  is same as Y t for the first time because once they are

same they will be move together thereafter.
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So towards that we define another stochastic process call it Z which is (Z i)i∈ℕ where Zi is defined

as Zi=X i−Y i(mod n). Now see how does the value of Z change first of all Zi takes value in this

set 0, 1 up to n - 1. And 0 is the absorbing state once Zi becomes 0 then Zi+1 also becomes 0 and

so on, so 0 is the absorbing state. So here are the possible values  {0 ,1 ,2 , n−1} if  it  is 0 it

remains in 0 forever.

And in particular if it is in state i then with probability half Y stays there and X moves to its

neighbours so this you know in every step if X and Y are not same then the value of Z changes.

Because if a, either if X stays then Y changes and if Y stays exchanges this is when X and Y

have not met together. So this is it goes to left with probability half and right with probability

half and so this is the how this transition look like is how the transitions for Z process Z look

like. And for that we know and when it is n - 1 it will go to n this is 1 it will go to n – 2.



So from so mixing time is the expected time to hit 0 or to reach 0 for Z. And from 2 set analysis

let us call mixing time to be τ . So from the analysis of 2 set algorithm the randomized algorithm

for 2 set the same behavior was there for 2 set.
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And we observe that expectation of  τ  is less than equal to  n2 it depends on the start state and

even if it starts at n - 1 then it is n2 if it starts at some state other than n - 1 then this strictly less

than  n2. So now using Markov inequality we have probability that tau is greater than equal to

twice n, square is less than equal to in,  n2 right. This way 
E [τ ]
2n2

 this is less than equal to  n
2

2n2

which is 
1
2

.

So probability that tau that for t≥2 log(1ϵ )n2 we have X t≠Y t. That means these 2 processes have

not met even after  2 log(1ϵ )n2 in this case is  (12)log2(
1
ϵ )

 which is  ϵ . So after  2 log(1ϵ )n2 many

states the probability that these 2 brothers have not met is less than equal to ϵ .

Hence the mixing time the tmix and if they met the distribution of X t  so this Y t was always Y, we

started Y in π  and X was arbitrary. So and if they met at t-th state then the distribution of X t+1



onwards  it  will  be  π . So  tmix(ϵ ) is  less  than  equal  to  tmix(ϵ ) is  the  mixing  time  when the

probability of so tmix so this is from coupling lemma tmix(ϵ ) is less than equal to 2 log(1ϵ )n2.

The distance of t of distributions between the distribution of X t  after tmix(ϵ ) many steps and the

stationary distribution is less than equal to 2 log(1ϵ )n2 many steps. That is let me write that the

total variation distance between X t  and π , Y π  because this is the distance between X t  and Y t

this is a probability that X t  is not equal to Y t and total variation distance is at most probability X t

not equal to Y t. 

These from coupling lemma and the distribution of twice Y t is π  so the total variation distance

between X t  and π  is at most epsilon after 2 log(1ϵ )n2steps.
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Our next example is shuffling cards so what is the Markov Chain so suppose we have n cards the

state space of the Markov Chain is the set of all n factorial permutations of this n cards. And now

we will define transition, so the fundamental process of card shuffling is how many times we

should shuffle the card so that the all cards are uniformly distributed or saying the same thing in

other way. The pack that we have is one of the n factorial permutations uniformly at random.



So what is the process? The process is very simple at every state what is the shuffling process?

What is one strip of shuffling at every state we pick one card uniformly randomly from the set of

n cards and put it at top. So it is like there are some permutations pi 1 to pi n this is suppose the

current deck look like I pick an, card uniform at random and put it bring it at the top and that is

how I get the next permutation and so on.

This is how the transitions are defined so again is this Markov Chain irreducible so Markov

Chain is clearly reducible because from every permutation by this process you can reach any

other permutation. So the Markov Chain is clearly irreducible since every permutation can be

obtained from every other permutation. And is it aperiodic of course yes because of self-loops

the randomly picked card may be the fast card itself then the permutation does not change.

(Refer Slide Time: 30:41)

So the Markov Chain is a periodic because of self-Loop at every state. Hence the hence the

stationary distribution is unique and the Markov Chain converges to it  so we will  stop here

today. 


