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Mixing Time, Reversible Markov Chain

Thank you welcome in the last class we have started discussing Markov Chain so in this class

also we will continue our discussion on Markov Chain.

 (Refer Slide Time: 00:36)

So Markov Chain continues, so now let me State the fundamental theorem of Markov Chain

without proof fundamental. So it states that any finite irreducible and aperiodic Markov Chain

has a unique stationary distribution. Moreover, the Markov Chain converges to its stationary

distribution irrespective of its starts state. So in the last class we have looked at periodicity and

aperiodic Markov Chains finite means the number of states is finite.  

So a Markov Chain is called finite if its state space is finite. And just finite and approved city it

ensures it guarantees stationary distribution but you know it does not guarantee unique stationary

distribution. For that to see that you just take you know 2 disconnected copies of Markov Chain

and  it  depends  on  the  start  state  and  there  are  various  there  are  infinitely  many  stationary

distributions and the convergence also depends on where it starts. 



So what we need is connectivity that you know every state is reachable from every other state

and that property is called irreducibility of the Markov Chain. So a Markov Chain is  called

irreducible if for every 2 states i and j the probability of reaching i from j is non-zero. 

(Refer Slide Time: 06:01)

And the probability of reaching j from i is also non-zero that means basically from i there is a

path to j and from j also there is a path to i. So we will not prove this prove this result because

that proof is not very much with the test of the course but it is available in any standard textbook

on Markov Chain.  So use this result and now let  us define some more concepts. So here is

another definition which defines a distance metric on probability distributions. 

So it is called total variation distance. So let P and Q be 2 distributions over some common space

which formally is called sigma algebra under Sigma algebra consists of a set of outcomes and set

of events so a f is the set of events. Then the total variation distance  dTV (P ,Q) is defined as

dTV (P ,Q) is supreme cover all events S∈F |P(A)−Q (A)|. It is across all events the difference

that these 2 probability distributions P and Q give to these 2 events. So this is needed for our next

topic which is called mixing time and coupling.
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So what is mixing time? So for any ϵ >0 the mixing time tϵ  or let me write this a t-mix mixing

time of the Markov Chain is minimum over i such that total variational distance between X i and

π  is less than equal to  ϵ  is arraigning. So beyond i the take the distribution of  X i and π  they

differ by at most ϵ  the total variation distance at most ϵ . So this is called The Mixing time and

now what is coupling?

A coupling of 2 random variables X and Y with distributions μ X and μ Y  a coupling of X and Y

with distributions  μ X and  μ Y  is joint distribution  μ X, Y . Such that the marginal distributions of

μ X, Y  on X and Y are respectively μ X and μ Y . So it is a joint distribution were which respects the

individual marginal distributions that is the cup that is called coupling
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And what is coupling Lemma? This is called coupling Lemma. So for any 2 distributions for any

2 discrete random variables X and Y we have total variational distance between X and Y is less

than equal to probability that X is not equal to y. So let us prove this Lemma proof. So let A be

any event then we have the following probability that X takes value in A is probability that by

law of total probability X takes value in A and Y takes value in A + probability that X takes

value in A and Y does not take value in A similarly probability that y belongs to A is probability

that Y takes value A.

And probability that X takes value A + probability that Y takes value A and X does not take

value A. so if we subtract this and take mod then mod of probability X in A - probability Y in a

this is mod of probability X takes value in A and Y does not take value in A - probability Y takes

value in A and X does not take value A. So this is for one A so this is less than the probability

that X not equal to Y and this holds for every event A.
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And hence supreme of over A in if probability that X takes value in A - probability that y takes

value  in  A this  is  less  than  equal  to  probability  X not  equal  to  Y.  Left  hand  side  is  total

variational total variation distance dTV  between X and Y this is less than equal to probability X

not equal to 1. Which concludes the proof of this Lemma? So next we define some more concept

of Markov Chain and there is a class of Markov Chains which are called reversible Markov

Chain which is very common. 

So let us define reversible Mark Chain. So Markov Chain is called reversible. So, what is the

motivation? So the fundamental theorem of Markov Chain states that you know for every finite

aperiodic and irreducible Markov Chain there exists a unique stationary distribution but how to

compute the distribution? Recall the condition of stationary distribution is π P=π .

So it boils down to n linear equation solving n linear equations. So this is equivalent to n linear

equations in variables  π 1 ,π 2 ,…,π n and of course these are distribution. So we have another

equation π 1+π 2+…+π n=1 so if we solve this n + 1 equations, We get a distribution we get our

unique stationary distribution basically says under those conditions this state of this set of linear

equations will have a unique solution. 

Now it turns out that you know for some Markov Chains satisfy some extra condition which is

called detailed balance equations. If a Markov Chain satisfies detailed balance equation it will be

for this Markov Chain computing stationary distributions is much more straightforward. Now



what is little balance equation it says that for every, i j  any 2 state for every, i j in states is

π iPi j=π j P j i and these this holds for all pair of sets i j and if and these are the detailed balance

equations and any Markov Chain.

Which satisfies detailed balance equation is called a reversible Markov Chain. So such a Markov

Chain which satisfies detailed balance equations is called reversible Markov Chain. So let us see

and for reversible Markov Chains you know this π ’s will be the stationary distribution.
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So for see that you know let us see why this is easy for a reversible Markov Chain let us show

that  you know any set  of  any  distribution  π  which  satisfies  detailed  balance  equation  is  a

stationary distribution for reversible Markov Chain any distribution pi satisfying detailed balance

equations is stationary distribution. So let us prove this so what stationary distribution that means

it satisfies π P=π  that means what is π P?

And this I need to show this is to show this should be equal to π j for stationary distribution. So

suppose  π  is a distribution which satisfies detailed balance condition so what is this the jth

coordinate of π P? ∑i=1

n
π iP i j now apply detailed balance conditions π iPi j is same as π j P j i.

Now π j is independent of i so it comes out π j 1 to, n P ji now what is summation of P ji? So here

is the state j and these are the probabilities this is i. So this is the sum of the probabilities of

outgoing edges which sums to one because it is a stochastic Matrix. So this sum is one this is



equal to  π j. So this shows that for a reversible Markov Chain any distribution which satisfies

detailed balance conditions must be a stationary distribution. Now let us see how this can be

used. So now we see some applications our first application is application of Markov Chain.
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The most important application is what we will see we will study at depth is random walk on

graphs on undirected graphs. So suppose G be a graph on vertex it is 1 to n and edge set is E and

at every vertex it picks one of its outgoing neighbors outgoing edges uniformly at random. So Pi j

here is i here is j if there is an edge from i to j it picks that edge uniformly randomly among all

its neighbors so suppose d i is the degree of i.

So pi j is 
1
d i

 if there is an edge from i to j. So undirected graph so there is an edge {i , j}∈E and 0

otherwise now let us find out what is the stationary distribution assume connected underrated

connected graph suppose it is connected. So there is no isolated vertex so that means this is

defined degree is never 0. So, we now you know verify that π i=
di

2|E|
 satisfies detailed balanced

equations. 

So what is retail balance equation let us recall π i pi j should be equal to π j p ji now if there is an

edge between if there is no edge between i and j then both pi j and p ji are 0. So both π i pi j and



π j p ji are 0. So if there is no edge between me and j then this equation is satisfied so if there is an

edge so let us see what is um how this equation is satisfied then π i=
di

2|E|
.

But pi j=
1
d i

 this is 
1

2|E|
 which can also be written as 

di
2|E|

1
d j

=π j p ji . So it satisfies the detailed

balance  equations  hence  the  stationary  distribution  is  π i=
di

2|E|
 this  is  one  of  the  stationary

distribution and see how it is how easy it is to compute because it is because it is a reversible

Markov Chain. It satisfies a detailed balance equation. So we will continue from here in the next

class. 


