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Markov Chain, Periodicity, Stationary Distribution

Welcome so today we will start a new topic which is Markov Chain which is a very important

tool for randomized algorithm design.
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So we now start Markov Chains, so it is a Markov Chain is a, he is a stochastic process; and

stochastic  process  is  nothing  but  a  sequence  of  random  variable  X0 , X1 and  so  on  over  a

probability space. With the property that for all x i in say suppose this random variables take real

values then probability that  X i=xi given. Suppose let us start this index from 1, 2 and so on.

X i=xi given X i−1=x i –1 ,…, X1=x1.

This is probability of X i=xi given entire history is probability of X i=xi given the last state this is

called the Markovian property. So you know this hence if the state space of the Markov Chain is

say 1 to, n.
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Then the Markov Chain can be described using what is called state transition probabilities pi j s,

where i j is from 1 to, n. Where pi j is the probability that the next state is j given the current state

is i. So once we have a Markov Chain what are the basic questions that we are interested in so

we are often interested in 2 basic questions. So basic questions in a Markov Chain so question 1

given a start state what is the expected number of steps needed to reach another state in the

Markov Chain this is called hitting time.

If you recall in the analysis of the or randomized two set algorithm we were interested in hitting

time the Markov of state Markov Chain has n + 1 states. Let me write this way say 0, 1 to, n and

the transitions are like from 0 it goes to 1 with probability 1 from 1 and this is the mark option y.

Let you check that you know that x was not a Markov Chain because that probability depends on

history it does not depend only on what is the current state.

So from 1 it goes to again 0 with probability half and 2 with probability half, from 2 it goes to 1

with  probability  half  and  it  goes  to  3  with  probability  half.  From n  -  1  it  goes  to  n  with

probability half and n - 2 with probability half. And in these current absorbing, state once the

Markov Chain goes there it stays there forever. 

And if you now recall the analysis of randomized 2 set algorithm all we are interested in is that if

it start at any state what is the expected number of steps it takes to hit n that is the hitting time.



And we saw that the hitting time of n for the start state 0 is n2 that is what we showed so this is

the question is question one.
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And question two given a start state does there any limiting distribution, does there exist any

limiting distribution; that means what this is the; or my Markov Chain X1 , X2 ,.. . and so on. Now

suppose  X1=x1 it starts at some state then what is the distribution of  X i. And this distribution

does it does converge so that and if it if it converts so does that converge so that is the first

question.

Does that exist any limiting distribution even if it is exist is it unique that means irrespective of

start state. So does not matter what is the distribution of X1 is the limiting distribution unique. So

and so for example let us take an example of Markov Chain with 2 states state 0 and state 1. And

it has 2 transitions from 0 it goes to 1 with probability 1 and from 1 it goes to 0 with probability

1.

Now you see that you know if this the start state is 0 that means if X1 is 0, then X2 is always 1 X3

is 0 and X 4 is 1 all even states and at even steps the Markov of Chain stays at 1 and at odd steps

Markov Chain stays at 0. And you know so hence there is no limiting distribution if the Markov

Chain starts at 0 or 1. So in this case it the distribution does not converge no limiting distribution

if X0 is 0 or X1 is 0 or X1 is 1 if it starts at 0 or 1. 



But if the start state is if X1 is 0 with probability half and 1 with probability half then the Markov

Chain stays there what is the distribution of X2 then? X2 will be the probability that X2 is 0 is the

probability that X1 was 1 which happens with probability half. And the probability that X2 is 1 is

the probability that X1 is 0 which happens with probability half. 

So you see that you know the distribution of X1 , X2 , X3 all are the same as the distribution of X1

and in this case limiting distribution is the distribution of X1 so in this case limiting distribution

exist. So suppose so we will see a class of Markov Chains where limiting distribution exists and

it is unique. So once we have these two unique limited distribution unit means irrespective of the

start state.

Then the next question is so if yes then how many steps in the Markov Chain takes to go epsilon

close to that limiting distribution; this is called mixing time this time. So we will see all these

concepts now. So this sort of Markov Chains is called periodic Markov Chain.
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So what is a periodic Markov Chain, let us define definition periodicity of a Markov Chain. A

Markov Chain is called periodic if there exists positive integer Δ such that probability that X i+s

equal to a given X i equal to a this is 0 for every a not be s is 0 unless s is divisible by Δ for some

a. So a Markov Chain is called periodic if there exists some state a where you know it if at the ith



step the Markov Chain is at that state it will be in the after multiples of delta many steps only it

will be in that state. 

That means probability of X i+s will be 0 given X i equal to a given X equal to will be 0 unless s is

divisible by delta. So such minimum delta is called the periodicity of state a, equivalently for any

state a, if s(a), is all natural numbers such that probability X is = a given X1 = a, is not equal to

0. Equivalently for any state a, this then state a, is called periodic if and only if GCD of s(a), is

not equal to 1 and that GCD is called the period. A Markov Chain is called periodic if any of its

states is periodic. 

So there is a standard technique of converting any periodic Markov Chain to aperiodic Markov

Chain. So converting without and worrying by converting that stationary distribution does not

change it so that is what.
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So converting or let me write this way enforcing periodicity without changing what is called

stationary  distribution.  Now  what  for  first  let  us  define  what  is;  stationary  distribution?  A

distribution π  over the states is called a stationary distribution. If P is the transition probability

matrix P×π =π . Now what do you mean by π ×P, let us see π  what is π  times, π  equal to it is

a distribution suppose it has n states suppose let s is 1 to, n.



So π  is the vector  (π 1 ,π 2 ,….,π n) suppose and this is the current distribution of the Markov

Chain suppose this is the distribution of X i. Suppose X i is distributed according to π  that means

X i is 1 with probability  π 1 its  2 with probability  π 2;  and so on let  us find out  what  is  the

distribution  of  X i+1.  Now  X i+1 suppose  this  is  π ’ so  what  is  π ’?  So  π ’ is  suppose  it  is

π 1
’ ,π 2

’ ,…,π n
’ .

Now how will I compute π 1
’? What is the probability that i + 1 is iteration the Markov Chain is in

state 1. So π 1
’  it is the probability it was in state 1 in the i the iteration times it takes the transition

it goes from 1 to 1 + it was in the probability that it is in state 2 times it makes the transition to 1

from 2 it goes to 1. In general π jπ j
’=π 1 P1 j+π 2P2 j+...+π nPnj.
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So if the current distribution is pi the next distribution is pi times p this is the distribution of the

next state. So now a distribution is called stationary distribution if the distribution of next state is

the distribution of the current state. So that means if the Markov Chains distribution is π  it is in

the stationary distribution then it will remain in the stationary distribution.

So this distribution for this Markov Chain 1 with probability half and 0 width probability half is

a stationary distribution of this Markov Chain this is right stationary distribution. Now we will

see a technique of converting a Markov Chain or making a Markov Chain aperiodic without



hampering the stationary distribution. So let p be a Markov Chain we are possibly periodic, so

what we do is that we add self-loop in each state we make it a lazy.

So introduce laziness so at each state i it  remains in the state with probability half and with

probability half it follows the distribution of p. So define q to be p + what is the distribution of

just staying there it is the identity matrix 
I
2

. So this is the, consider the Markov Chain with state

transition probability q and we claim that stationary distribution does not change. That means if I

have a π  such that π P=π  then π Q=π .

Let us see what is π Q? π Q=π P+ I
2

=π +π
2

=π  . So this way we can make any Markov Chain

aperiodic  without  hampering  its  stationary  distribution  so  we  will  stop  here  today  we  will

continue in the next class. 


