
Selected Topics in Algorithm
 Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Module No # 04
Lecture No # 20

Randomized Algorithm for 2SAT

Welcome in today's lecture we will see a very simple randomized algorithm for 2SAT it will be

again a Monte Carlo type of randomized algorithm.

(Refer Slide Time: 00:40)

So what is the 2SAT problem? Input is a Boolean formula a 2SAT formula and how does a

2SAT formula look like it is like a literal l1 or l2 and some literal l3 or l4 and so on. It is an end of

literals end of some clauses and each clause is a, or of 2 literals each literal is a variable or its

negation. So an example of a 2SAT formula could be X1∨ X̄2 and X2∨X̄3 and you know X3∨X1

something like that.

So 2SAT formula over 2SAT formula with m clauses over in Boolean variables. What is the

output let us call this formula f is f satisfiable; that means does there exist an assignment to the

variables of the formula which makes all clauses turn to true. For example this formula may be

satisfiable let us check you can set X1 to true and X2 to true maybe X3 you can make arbitrary

with true again. So this particular assignment satisfies this formula and or evaluates this formula

to true hence this formula is satisfiable.

So this particular problem is polynomial time soluble 2SAT is polynomial time solvable in

contrast you know 3 sat is not parliamentary soluble at least that is to the current understanding

and that part will see after a couple of lectures. But now let us focus on 2SAT formulas it has a

deterministic algorithm by reducing it to graph and so on but now in today's lecture we will see a

very simple randomized algorithm for 2SAT.

(Refer Slide Time: 04:43)

So here is the algorithm so pick a uniformly random assignment for X1 ,…, Xn suppose these are

the variables x1 ,…, xn. So let us call this you know this assignment f (x1,…, xn) or let us call

some g some other name let us call it g maybe g(x1) ,…,g (xn). So g is basically a function from

x1 , ... xn to true and false. While it is not satisfied by g and then so that means if the formula f is

not satisfied by g then you keep on trying and we also keep track of how many times we have

run the algorithm.

So for that let us call this is some counter you maintain n is 0 and if g is not g is not a satisfying

assignment then there exists at least 1 clause which is not satisfied by g. So let see be a clause

not satisfied by g pick any such clause. Suppose c involves the variables x i and x j that means the

clause the literals involved in c is either x i∨ x̄ i∨x j∨ x̄ j and so on. Pick now among between x i

and x j pick one of them uniformly random and negate them that way this clause c will be

satisfied and I get a new assignment.

Pick 1 of x i and x j uniformly randomly and negate it of course we increase the counter n is n plus

1 and we so this way we try various assignments. And if we have tried many times and we are

still not able to find an assignment then we will then we will simply output no. So if n is greater

than some threshold this we will see later in the analysis what should be the threshold? If n is

greater than threshold and g does not that means after inverting the x i or x j the new g; g does not

satisfy f then output no that it is not satisfiable.

Otherwise you again try with some other g and so on. So this is the algorithm is a very simple

algorithm so what is the idea? You start with a random assignment if that is not a satisfying

assignment then at least 1 clause is not satisfied. So pick any such arbitrary clause which is not

satisfied in this step there is no randomness involved. Now this clause because it is a 2SAT

clause it involves 2 variables x i and x j.

Pick any one of them and invert it, negotiate it and that will that that will satisfy that clause c and

we will have a new assignment let us we are that's how g is changed over iterations. And again

check if g is a satisfying assignment or not and if not repeat the same process and after trying

many number of times. We will see how many if we have not theta satisfying assignment we

output no that's the algorithm. So number of iterations is basically is the threshold what we sat

and that we will see what should be the threshold and for that let us do the error analysis.

(Refer Slide Time: 11:37)

So in this case if the algorithm if the Boolean formula is not satisfiable then that means there

does not exist any satisfying assignment then it does not matter how many times it tries or how it

tries it can never going to find a satisfying assignment simply because it is not sat satisfiable. So

if the input 2SAT formula is not satisfiable then the algorithm always outputs correctly here in

seventh output is if it finds a satisfying assignment g. So it can only make an error if f is

satisfiable and it has not found it.

So the only way the algorithm can make an error is that, the input formula if is satisfiable but the

algorithm has failed to find satisfying assignment so that is the only way it can make an error. So

let us assume so let us assume that f is satisfiable otherwise it does not make an error if is

satisfiable and h be a satisfying assignment. Now we define sequence of random variable

X0 , X1 , X2 ,.. . and so on infinite sequence of random variables X0 , X1 , X2 ,.. . and so on. Where

X i is the number of variables that h that means this assignment h and g assigns same value after

iterations.

So it is like on how many variables h and g agree if h and g agree in all variables then the

algorithm has found and found a satisfying assignment namely h. And what we will show is that

you know in expectation if there exist an h at this algorithm will eventually find it not after too

much iteration.

So if saying the same thing in other way if they are indeed exist a satisfying assignment it is

unlikely that this algorithm does not find it after sufficiently minerals. Now what does

sufficiently mini run mean that the analysis will tell what does that that quantification it will

quantify the sufficiently may be done. But let us see first you know how does this variables are

distributed.

(Refer Slide Time: 17:29)

First observe that each X i take values between 0 and n. It can agree the assignment or g can agree

with h in 0 to n variables and when does the algorithm terminate if any X i value is n then the

algorithm definitely terminates and it is successful. So the error is that you know the X i does not

take the value n after sufficiently many run. So let us see how they are distributed so what is the

probability suppose you know some X i is 0.

That means h and g are in complete disagreement whatever value h assigns g assigns exactly

opposite. So in the next iteration every in every iteration the or algorithm negates 1 variable so

X i+1 then must be 1; whichever variable it negates on that variable now this h and g agrees this is

so one so if in the ith iteration or h and g does not agree on any variable then. So in i + 1 it

iteration h and g agrees on exactly 1 variable namely the variable which the algorithm has

negated.

For arbitrary value for j you know greater than 0 and say again less than n. Because if it is n then

the if X i is n then X i+1 is also n it is like the algorithm stops there. And X i+1 is not defined the

algorithm terminates if X i is n so what is the value of X i+1 if X i is j you know it negates 1

variable so the X i+1 can have only 2 possible values 1 is j +1 and if X i is j in the ith iteration if h

and g agrees on j mini variables and in i iteration you know the in i + 1 is iteration the algorithm

negates only one variable then after i + 1 of the titration the number of agreement could be either

j +1 or j -1. But what are their probabilities?

First observe that how the algorithm does picks a variable to negate it picks a clause which is not

satisfied by g. So suppose this clause is involves 2 variables X1 and X2. Now definitely because

h and g does not agree for both X1 and X2. Or at no at least one there is at least one variable

where h and g does not agree so h(X1) is not equal to g(X1) or h(X2) is not equal to g(X2) or

both.

It can of course the of course disagree on both the variables but in at least one there is there

exists at least 1 variable where they disagree after i iterations. Now what is the probability that in

the i +1 in the iteration our algorithm picks that variable where h and g does not agree it picks 1

of the variable uniformly randomly. So that variable is split with probability half the other

variable is picked with probability half.

And this is the case when there is disagreement on exactly 1 variable but it could be possible that

h and g disagree on both the variables that are the third case. In this case you know it does not

matter whichever variable it picks the algorithm picks it say that variable after negating it now

agrees h and g agrees on that variable. So in that case this probability will be 1 so in both cases

this probability X i+1 increases with probability at least half.

And so it decreases with probability at most half now you see that you know these variables this

is bit difficult to analyze. Because you know this is we cannot exactly write what are what are

this this is it depends on which clause it picks and how h assigns them so. This could be half or 1

at the top of this probability and the bottom probability could be half or 0. So what we do is that

for analysis purpose it is easier to analyze something simpler stochastic process.

Which is like this that considers another stochastic price is nothing but a sequence of random

variable where let us Y 0 , Y 1, .. . and so on. Which is sort of a pessimistic version in some sense it

is like probability of Y i+1 = 1 given Y i = 0 is 1 and probability of Y i+1 = j +1 is for j greater than 0

less than n given Y i = j this is exactly half and probability Y i+1 = j -1 given Y i = j is half. Now

what we will show is that we will analyze this stochastic process and that would be enough y.

(Refer Slide Time: 25:20)

Let us understand this pictorially so this is 0, 1 these are the possible values of these random

variables and here is n. Now there is a process this let us see how this random variable x behaves

if X i is say j the ith iteration this value is j then it goes to j +1 with probability greater than equal

to half and it goes this way with probability less than equal to half. This is how X and there is

another process everything is same but from j it goes to j +1 with probability exactly half and it

goes to j -1 with probability exactly half.

So x has a tendency of going towards n more than Y X goes towards n with probability at least of

where Y goes to n with probability exactly half. So which one will reach is likely to reach n first

of course X so if we can show that you know bound how many after how many iterations y

reaches n that that gives a bound an upper bound on what is the expected number of iterations X

takes to reach n. So that is the idea so for that what we will do is that T X is the time taken for X

to reach n and T Y is time taken for Y to reach n.

It is clear that expected expectation of T X ; X takes less time than Y is expectation of T Y now

what we will show will give an upper bound on expectation of T Y and that way we will get an

upper bound on expectation of T X . So towards that we define another random variable define

you know random variable Zi define Zi to be the number of steps taken by Y to reach n from i.

(Refer Slide Time: 28:58)

So then if it is Z0 so if it is at zeroth position then the next iteration it will with probability one it

will go to 1 position because it will negate a variable so expectation of Z0 is 1 + expectation of

Z1 and expectation of Zn is 0 because it has already reached. For i in between values 1 to n -1

what is expectation of Zi if it is at i it goes to right side i +1 with probability half this is 1 +

expectation of Zi this happens with probability half and with probability half is 1 + expectation

of Zi−1.

So this is twice expectation of Zi is 1 + expectation of is Zi+1 expectation of Zi−1. These 2 we

know we now add this inequalities twice some i = 1 to, n -1 expectation of Zi is 2 + summation i

= 1 to n -1. Expectation of Zi+1 + summation i = 1 to, n -1 expectation of Zi−1 and this is twice n -

1. So n - 1 equality so we are adding so what we get is expectation of Zn−1 is expectation of Zn -

expectation of Z1 + expectation of Z0 +...+ Zn−1. Now expectation of Z0−Z1 is 1 so this is an

expectation of Zn is 0 this is 2 n -1.

(Refer Slide Time: 32:39)

So now using this we now compute expectation of Zn−2 is like 2 n -3 and so on. So expectation

of Z0 is 2n−1+2n−3+...+1=n2. So even if it starts at 0 after x in expectation n2 steps you know

it reaches n so if we sat threshold to be some you know λ×n2 then by Markov inequality does

not hit n with probability at most
1
λ . So the runtime of the algorithm runtime is O(n2) and error

is
1
λ less than equal to

1
λ so this concludes or algorithm so we will stop here today

