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Proof of Chernoff Bound

Welcome in the last lecture we started looking into concentration inequalities and we have

looked at Markov’s inequality and Chebyshev’s inequality and Chernoff bound. And we have

also seen how using Markov’s and Chebyshev we can give concentration bounds on the

performance of randomized algorithm around its screen. So in today’s class we will prove

Chernoff bound in the last class we had only stated it. So today we will see the proof.

(Refer Slide Time: 01:04)

We will prove the most general version so let me write the theorem again let X1 ,…, Xn be n

independent random variables taking values in  {0 ,1} random variable. And  S=X1+ ...+Xn

and let expectation of S be μ  then for any positive δ  we have probability that S is greater than

equal to (1+δ)μ  is at most ( eδ

(1+δ )(1+δ ))
μ

 .

And probability that S is less than equal to (1−δ)μ  is less than equal to ( e−δ

(1 –δ )(1–δ))
μ

.
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So proof so we take any positive real number alpha and this proof basically uses Markov’s

inequality  this  phenomenon.  We  have  already  also  seen  in  the  proof  of  Chebyshev’s

inequality so both Chebyshev’s inequality and Chernoff bound in the sense uses Markov’s

inequality at its core. So let  α  beginning real number and α  greater than 0. So probability

that S is greater than equal to (1+δ )μ  this is probability that eα is greater than equal to e(1+δ ) μ

.

This hold because this is since eα x is an increasing function on of x. Now eα S is a positive

random variable so now we apply Markov inequality and this is less than equal to E
[eα x]
e(1+δ )μ  .

This is applying Markov’s inequality for random variable  eα S. Now we write S as ∑i=1

n
X i

by, e(1+δ ) μ. 

Now this is 
E[∏i=1

n
eα X i]

eα (1+δ)μ . Now because X i’s are independent random variable eα Xi are also

independent.
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And hence the numerator is E[∏i=1

n
eα X i] there should be alpha again here. And this α  will

be here and will be here eα(1+δ ) μ and now we compute what is the E [eα X i ]. This is product i =

1 to, n so suppose X i takes value with probability pi so we have assumed only independence

but they need not be i.i.d they did not be identically distributed.

So suppose X i take values 1 with probability pi and 0 with probability 1– pi so it is eα pi +

this is the probability with which X i takes value 1. And if X i is 0 e need to the power alpha 0

is 1 and that happens with the probability 1– pi by, eα(1+δ) μ. Now this is 
∏i=1

n
1+ pi(e

α – 1)

eα(1+δ ) μ . 

Now this can be upper bounded as 
∏i=1

n
e(e

α– 1) pi

eα (1+δ) μ . This is because 1+x≤ex this holds for all

real number x∈ℝ and this particular inequality holds for all α . 
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And next we simplify it further and we get this is  
e
(eα –1 )∑i=1

n

pi

eα (1+δ)μ . Now ∑ pi=E[S ]. So let us

recall S was X1+...+X n and μ  was expectation of S which is E [X1+...+X n]. Now we apply

linearity of expectation is E [X1]+...+E [Xn]=p1+..+ pn=μ . 

So  we  put  it  here  e
(eα−1) μ

eα (1+δ )μ .  So  this  can  be  written  as  ( ee
α −1

eα (1+δ ))
μ

.  Now  these  holes  this

inequality so what do we have in somebody we have that probability that S is greater than

equal to (1+δ)μ  this is less than equal to ( ee
α −1

eα (1+δ))
μ

.

This holds so we have this for all α  positive real number now we pick an α  which minimizes

the right hand side and that will give me the tightest bound. Now how to pick  α  which

minimize this? 
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So this right hand side is nothing but  (eα – 1–α (1+δ ))μ  . So you can ignore  μ  and try to

maximize eα – 1–α (1+δ ). And because it is a when we want to minimize and again because

ex is  increasing function of x.  So we pick we choose  α≥0 such that  eα – 1–α (1+δ ) is

minimized.

So let  us  call  it  f (α )=eα –1 –α (1+δ ) so  f '(α )=eα – (1+δ) set  it  to  0.  So  α=ln(1+δ)

f ‘’(α )=eα so that means that f ‘’( ln(1+δ)) is the this is greater than 0. Since α  is greater than

0 so this is the minimum value of f (α ).
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So we put alpha equal to so putting α=ln(1+δ) what we have is that probability that S is

greater  than  equal  to  (1+δ )μ  is  less  than  equal  to.  So  in  this  expression  here  we  put



α=ln(1+δ) and let us see what we get? So eα for α=ln(1+δ ) will be 1+δ  and that 1 get

canceled. So it will be eδ by and in the denominator we have eα(1+δ ).

And if we put  α=ln (1+δ) it is coming  (1+δ)(1+δ )μ. So these proves the upper bound so

similarly using the take technique we can show the probability that S≤(1– δ )μ  is less than

equal to ( e−δ

(1 –δ )(1–δ))
μ

 which concludes the proof of Chernoff bound.

So now let  us  see  some application  of  Chernoff  bound  how we  can use  it  to  get  tight

concentration around mean. So the first so application or use of Chernoff bound the classic

application is flipping a coin. So suppose we have a coin which comes head with probability

p.
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We toss n times let S be the random variable denoting the number of times the coin has come

head. So how can I compute is? So towards that let us define X i recall to 1 if i’th toss comes

head and 0 otherwise. So we see that S is X1+...+X n it is a sum of random variables where

each random variable takes a value in between 0 and 1. And expectation of S is expectation

of X1+...+X n and now we apply linearity of expectation.

And now you see that each X i so this is linearity of expectation and each expectation of X i

from here  these  are  indicator  random variable  it  takes  value  1  if  some  particular  event

happens. And expectation of an indicated random variable is the probability of that event and



this is the probability that head comes which is p. So this is p each expectation of X is p this

is pn. 
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So now applying Chernoff bound what we get is? Probability that S deviated from its mean

by more than δ pn it is like assume that suppose we are using this experiment to toss the coin

n times to have an estimate of p. What is the probability that this coin comes up head? And

this is the sort of application of finding whether a coin is unbiased or not and what is the

empirical probability? 

Empirical probability is number of times it has come up head by n and in that we make an

error of at most delta this is the probability of error is at least delta this probability is bounded

this is less than equal to 2e
−δ 2 μ

2. So this is one of the special forms of Chernoff bound so this

is applying probability that S – μ is greater than equal to δ μ  this is less than equal to 2e
−δ 2 μ

2.

So applying this form of Chernoff bound we get this and now the question is what is the delta

or what is the error bound? So for δ= c
p√n

 we obtain probability that |S – pn| is greater than

equal to c √n is less than equal to 2e
–c

2

2 p. Now p is at most 1 and this is negative so this is

less than equal to 2e
–c

2

2. 

So these are applicable in even in sort of voting application so suppose mu as application on

predicting say winner of an election say between 2 candidates. Suppose one candidate has got



p’th fraction of all votes and we pick a port uniformly at random and if that candidate that

random vote is for candidate a then it is like head and if that vote is for other candidate. Then

it  is  like tail  and it  is  boils  down to estimating what  is  the fraction of  votes? That  one

candidate as got and from that information we can predict what will be the outcome of the

election. So we will stop here today.


