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Concentration Inequalities: Markov, Chebyshev, Chernoff

Welcome  so  in  this  lecture  we  will  study  some  important  but  fundamental  concentration

inequalities for probability distribution. 
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So this lecture 3.4 concentration bounds our first concentration bound concentration inequality is

the Markov inequality. So let X be a non-negative random variable and c be any positive real

number. Then probability that X takes value at least see is less than equal to c by expectation of

X. Equivalently probability that X takes more than  λ times expectation of X this is less than

equal to this is expectation of X by c is less than equal to 
1
λ

. 

This holds for all λ greater than 0 and this is sort of the best bound possible if you only use the

expectation of X to bound it is to get this concentration bound.
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So proof so let will prove this result for discrete random variables only so because you know for

randomized algorithms this is the case when you what we need mostly. So we will assume is not

without  loss  of  generality  that  X is  discrete  random variable.  For  discrete  random variable

expectation of X is ∑ i Pr [X=i ] this is greater than equal to i in support of X and i greater than

equal to c.

And this is greater than equal to you know in this region i is greater than equal to c. So this i we

can lower bound it using c that is what we do sum i in support of X, i greater than equal to c; c

times probability X = i it may. Let us bring c out i in support of X, i greater than equal to c

probability X = i.
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Now this is greater than equal to not greater than equal to the last one this also should be equal.

Now this probability is the probability that X takes value at least c this is c times probability that

X takes value greater than equal to c. So probability that X takes value greater than equal to c is

less than equal to 
E [X ]
c

 which concludes the proof. Now this shows that you know how I can use

Markov inequality?

We had observed that you know that the randomized quick set in the last lecture we have seen

randomized quick sort makes at most twice in  ln n comparison in expectation for every input.

Hence on any input it makes say at least say 100n ln n comparisons with probability at least or at

most using Markov. This probability is upper bound by at most expectation which is at most

twice in ln n and X value should be greater than equal to 100n ln n so this at most 
1
50

. 

And so whenever we have an on the performance of in algorithm we have a whenever we have a

bound  on  the  expected  cost  we  can  use  Markov  to  get  this  straightforward  you  know

probabilities. So from expectations we can go to probabilities using Markov in this way direct

application of Markov. Now we can improve Markov significantly when we have when we use

the second moment that means variation and the inequality that you get is called Chebyshev's

inequality.
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So what  is  the  theorem? Let  X be  a  random variable  with  finite  expectation  mu and finite

variance σ 2. Then for any positive real number c we have probability that |X−μ|  deviates from

mu by at least c this is bounded by 
σ2

c2
 poof. Probability |X−μ| is greater than equal to c. This is

same as probability that (X −μ)2 is greater than equal to c2.

Now (X −μ)2 this is a positive random variable so I can use Markov and get 
E [ (X −μ)2 ]

c2
  using

Markov inequality. And E [( X−μ )2 ] is nothing but variance this is 
σ2

c2
 which concludes the proof.

So let us apply now Chebyshev to get how much the expected number of comparisons can vary

from its mean for randomized quick sort.
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So probability that X is  an expected number of comparisons that the randomized quick sort

algorithm makes on any particular input fix a  particular input.  And let  X be the number of

comparisons it is a random variable so it is slightly more than the expectation in ln n expectation

is at most twice in ln n. And what is the probability that the number of comparisons is more than

2.1n ln n.

So this is I can write it this way this is less than equal to probability that X deviates from its

expectation this deviation is less than 0.1 ln n. Again why I have used this less than because if the

deviation  is  less  than  0.1 ln n then  X  is  this  deviation  is  more.  So  if  X  deviates  from  its

expectation by more than 0.1 in learning that is a larger event because this is the event where X

is more than  2.1n ln n. And in this case and what is this event that X deviated this is a larger

event.

Because if X is more than 2.1 in learning then X has divided from its expectation by at least 0.1

in running but it could it could deviate in the other way also, it can be less than its expectation

and that less; X takes value or 0.1 in ln n less than its expectation so that way also it can deviate

so this is a larger event. That is why the probability increases this that is why this less than equal

to this is mod of X minus expectation of X is greater than equal to 0.1n ln n.



Now this is less than equal to now let us apply Chebyshev variance of X by this square this

Θ (n2 ln2n). Now variance is at most, n2 so this is 
1
Θ

( ln2n) in since variance of X is less than n2. I

would let you check as a homework now you see that this bound is this is a much more we get

much  stronger  bound  much  stronger  concentration  bound  using  Chebyshev's  inequality

compared to Markov's inequality.
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This  could be written as  a  theorem more concretely on every input  the probability  that  the

randomized quick sort. Algorithm makes more than 2 plus Epsilon in learning comparisons is at

most 1 over Epsilon square Lon square in for all Epsilon greater than 0. Now no wonder that you

know using higher moments we can get even stronger concentration inequality and that is the

idea of Chernoff bound. 

So what is Chernoff bound? Let me write where you know in turn of bound the variables are on

or the setup is such that the it means all the moments exist expectation of x to the power i exist

for all  integers i.  So in a specialized setup we write like this  let  X1 ,…, Xn;  X i , i∈[n ] be an

independent random variables each taking value in 0, 1. And S=∑i=1

n
X i you know this so it is a

concentration on S. 



Now  you  see  that  S  has  is  already  has  much  more  structure  than  Markov  inequality  or

Chebyshev’s inequality. It is a sum of 0-1 random variables let expectation of X be μ  then for

every positive delta we have the following.
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Probability  that  is  deviates  from  μ  by  a  multiplicative  factor  of  1+δ  is  less  than  equal  to

( eδ

(1+δ )(1+δ ))
μ

 . And probability that S deviates by 1−δ  of μ  X is less than equal to 1−δ  of μ

this is ( e−δ

(1−δ )(1−δ ))
μ

. We will prove this in next class but let me make some useful I mean this is

the most tight Chernoff Bound in most tight form. 

But we can relax this slightly and make it make it make this bounce more useful or more usable.

So more usable bounds these bounds look complicated and difficult to work with. So the first

one is multiplicative form what is the multiplicative form? For any  δ ∈[0 ,1] the previous 2

inequalities  δ  could be any positive number greater than 0 any positive number. But now if

δ ∈[0 ,1] we can simplify this right hand side further and get this.

Probability is greater than equal to 1+δ  times μ  is less than equal to 2 to the less than equal to

e
−δ 2μ

3. And probability S is less than equal to 1−δ  to the μ  e
−δ 2μ

2. 
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This among the most useful forms of Chernoff bound is the multiplicative form and there is

another additive form which is also very useful additive form for large deviation is not applicable

for small diffusion. So for any mod greater than equal to twice  μ  probability that S is sum is

greater than equal to R is less than equal to 2−R. There is a 2 sided form which is also very useful

probability that |S−μ| is greater than equal to δ μ . 

That S deviates from  μ  by at  least  δ μ  this is  less than equal to  2e
−δ 2 μ

3.  This holds for all

δ ∈[0 ,1]. This can be obtained from the multiplicative form and there is another one for large

deviation probability that S is greater than equal to k μ is less than equal to ( ek−1kk )
μ

, so we will

stop here today. 


