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Hello and welcome back to this lecture series on Computational Foundations of Cyber Physical 

Systems. So, this week we will be starting with Kalman filters, how they are used for state 

estimation in cyber physical systems and several other applications also exist for Kalman 

filters. So, just to uh have some recap uh  

(Refer Slide Time: 00:49) 

 

what we have here is uh well, this was my standard example of cyber physical system 

examples. Right.   

(Refer Slide Time: 00:54) 



 

And uh so, this is, this was our course uh organization, right, so, till date we have we have 

actually covered all these topics up to week 10 and we have learnt about basic control design, 

how to model the formal methods part on hybrid automata-based modelling and reachability 

analysis. We have learnt how to analyze complex non-linear CPS using Lyapunov stability and 

barrier functions, how to design optimal controllers using uh quadratic expressions and stuff 

like that, and how to how to actually use neural network-based controllers also.    

(Refer Slide Time: 01:34) 

 

So, uh what, one important thing that we did not talk about there is, (refer time: 01:34) well, if 

when we speak of optimal controllers like LQR and several other kinds of controllers like 

model prediction and others, so, they are based on optimization functions and we have shown 

how such optimizations can be solved in real time. But in many cases we also assume that the 



full state of the system is uh known to the controller but it is unrealistic. So, it is also possible 

in many cases that the full state is not known.   

  

What you have access to is just a set of measurements about the system. So, this is precisely 

where you need to understand that well, from such measurements how one can actually 

estimate the state and this is where the role of observers or predictors and estimators will come 

in. And Kalman filter as it happens is one such widely used state estimator. So, this was 

invented by professor Rudolf E. Kalman long back and it has still till till date it has found 

widespread application into domains of control and several other interesting electrical 

engineering discipline oriented domains and so we, I mean, we are just trying to give you a 

mathematical derivation of Kalman filter here and we are just trying to show you how it is to 

be put in practice.   

  

Let us remember that uh this is a quite involved topic. There are there are lot of deep 

mathematics and from a complex foundations of this topic but we are just taking a simple linear 

algebra approach and we are trying to figure out well, how the basic Kalman filter equation 

can be derived. So, that it will be our approach here during this coverage. 
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So, it is an optimal estimator in case of assuming Gaussian noises, right, and it is trying to infer 

parameters of interest from inaccurate noisy observations, okay.   

  

  



And when we say noisy observations, we are assuming that the noises are Gaussian, okay, and 

it will minimize the mean square error of these estimated parameters. Due to such Gaussian 

model noises, whatever is the error coming out in a mean square form, the the an expression 

will be created and we will try to figure out what is the exact filter which minimizes that 

expression. So, that that is the basic approach here.  

(Refer Slide Time: 03:48) 

 

So, that that is the (refer time: 03:48) basic approach here. So, in general, how is state estimated 

and how are such state estimates put into practice?  So, typically, that is how the control works. 

So, suppose let us assume that you have designed, you have indeed designed such a Kalman 

gain or a Kalman estimator, okay, and your original controller is having some gain K, okay, 

so, typically this is how you put it into practice. You will have the open loop plant.  

 

So, this is your plant. You can see that this is in the form of Ax plus Bu, right, xk+1, the update 

is happening based on Bu plus Ax here, right, and you are getting the measurement y equal to 

Cx, and this measurement comes to your Kalman gain, right, and so this is part of the observer 

circuit here.   

  

And what it is, this circuit is, is entirely working on the estimates of the system like you can 

see. So, if this is the estimate xk+1 based on the previous estimate, then what we can write is 

well, xk+1 hat is equal to Axk hat plus Buk. Okay. uh So, xk plus xk A xk hat plus B uk plus L 

multiplied by this difference that is the error uh between yk and the measurement estimate that 

the observer can generate, okay. So, L yk minus yk hat minus yk, where this uk that we have, uh 

what is, I mean, what really is it?   



  

So, this uk is a in this case uk happens to be nothing but this controller gain K times the reference 

r minus uh x, this estimate of x here. Okay. In case your reference is 0 in this place for the 

controller, so, you simply have a standard equational form that is minus k xk; but instead of 

minus k xk, you are having minus k xk hat. So, that is the more practical scenario because we 

cannot expect my controller like I was saying that it is going to have access to xk, right?   

  

So, for all practical purpose, this controller will have access to xk hat and this observer is the 

system which is responsible to generate these estimates xk hat recursively in each step based 

on its uh its sampling of the measurement yk. So, this is what you observe and through this 

observer, this is the estimate you generate. And this observer as you can see it is kind of 

mimicking your original system through the structure of A's and B's, right, but along with that, 

what you have is L which is the Kalman gain.   

  

The the entire purpose of this gain is to kind of minimize this difference, right. It will it will it 

will try to figure out a nice estimate of x so that based on xk's estimate if I derive a yk's estimate, 

the difference between yk hat and yk must be very small. Okay. So, that is that is how this entire 

equational setting comes in. So, this is my observer as you can see and it is generating xk hat. 

And like I said, for all practical purpose this is, xk hat is what with the controller will take as 

input, is because it will ideally not have access to the xk's. Okay.   
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So, uh we will have some assumptions here, like uh you will have uh noises disturbing the 

system. For example, for the measurements, you see yk equal to C xk. You are adding some 



noise here, ek, right, so, uh this ek is a measurement noise. And similarly if you see, this is your 

revolution equation of the state and for this evolution of uh xk, uh you have also added one 

noise term that is vk. So, that is your process noise. So, you are considering this v and e the 

process and measurement noise as discrete time Gaussian white noise processes who have 

some 0 mean and uh their variances are like this.   

  

So, you have the variances and covariances given by these terms. So, variance of process noise 

is R1; variance of uh measurement noise is R2 and their mutual covariance is R12. Also you will 

have the initial state of the system x naught assumed to be Gaussian distributed with some 

mean m0 and a covariance value R0. Okay. 
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So, uh so, overall, from this picture of uh actual deployment that how the system is really going 

to work with an observer that is generating these estimates, uh I can write this update equation, 

right, uh because you see this is how I I am able to generate xk+1's estimate using A xk hat B uk 

and I am expecting the Kalman gain to do a good job so that it does try to minimize this 

difference.   

  

So, whatever is this difference between its measurement that is the sampling and the 

measurement that it estimated based on previous measurements, so, this residue value I am 

trying to think that well, it is doing a good job so that this measurement measurement error is 

as small as most possible here. Okay. So, uh based on this uh we can write this update equation 

like I said. So, this notation let me explain. So, what it this means is that well, uh based on the 

kth step measurement, we are trying to estimate x in the k plus 1th step and it can be written 



through these equations where I can derive this using the previous estimate of k x in the kth 

step which was generated using measurements that were observed in the k minus 1th step, 

right.   

  

So, that is how I write this equation. And now, what do I have? I have 2 sets of equations, right, 

because I have this equation which is trying to uh kind of uh model the evolution of the state 

estimate. And as you can see, this idea of Kalman filter gain is coming as a multiplication factor 

or the gain corresponding to the residual because this is my original measurement and this is 

my estimated measurement and that gives me the residual and I am using this to be, I mean, to 

be handled by the filter here and the rest of the dynamics is here or that was there originally 

and with this I am generating the estimate, right.   

  

So, this estimate and my original state, if I just subtract from the original state the estimate, 

what I can write is a reconstruction error, right. So, let x tilde denote the reconstruction error. 

So, essentially, uh I can write something like this, right. I mean, well, how it comes is very 

simple. Let me just correct the orientation of the writing here. So, if I just apply the first 

equation for the state update and then I have this equation here, okay. So, with these two. So, 

uh as we were discussing. Let us look at the situation that well, how I can really construct the 

reconstruction error here.   

  

So, uh we already have these equations of uh the next state with respect to the system model 

as well as uh using the estimate with respect to the estimator, right. uh So, let us proceed from 

there. 
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So, this is a reconstruction error which is, minus the estimate. Now, if we try to do this math 

here, so, we will reproduce the original state update equation. Here goes the processed noise. 

Now we will replace this estimate by the update equation of the estimator.   

  

Here, for the time being, so, reproducing this thing here and the estimate of the previous step 

goes in here. So, that is pretty much it. So, this is the residue which gets multiplied by this 

Kalman gain which we are supposed to design. So, if you now simplify this equation, let us see 

what we get. So, of course, these two will get cancelled out and these two gets combined in 

here and you are left with the Kalman gain multiplied by the residue term. So, now you see, if 

this is your reconstruction error in the k plus 1th step, then the reconstruction error in the kth 

step is this, right.   

 

All right, so, we are doing something like uh, so, this is same and the process noise remains, 

and as you can see, we have added a term Lk C xk and here and again subtracted it to create this 

form here so that now if you see, this is again kind of the reconstruction error. So, I can write 

this thing, I can write this entire dynamics of the reconstruction like this. So, that is the 

intention, okay, for why I am writing it in that way. So, this is how this derivation comes, 

right.   

  

So, as you can see, uh this is what we have here, right, A xk tilde plus vk minus Lk y minus uh 

this Ck here. This is, this is the x actually. So, if you recall, this is nothing but my measurement 

noise here, right. So, that is how we defined uh the measurement noise. So, that is why we can 



start writing it like this through the ek. And then, if I write it in a suitable matrix form, I can 

write it like this, right, xk uh plus 1 tilde equal to uh I, the identity matrix minus Lk. 

   

In a vector form I have A and C in terms of. So, xk+1 is getting expressed in a dynamical 

equation using xk with the additive of, additive term of the 2 noise values, right. So, that is like 

a noise matrix vector representation of the dynamics of the reconstruction here. So, this is what 

we intended to do here all the time. So, that is the derivation and that is how uh it is happening. 

So, just to recall, yeah, this is where we had ek being defined, right. So, fine, uh just recall that 

this is; yeah.   

(Refer Slide Time: 20:50) 

 

Now, if we just go forward, (refer time: 20:50) so, let us understand what we are really trying 

to do.  

 

So, we, I mean, we have set up a template equation here, right, an equation which is kind, 

which is which is set up with the objective that it will give me an estimate of x based on some 

previous estimate and the estimate should be defined in such a way that it minimizes the error 

between the estimate and the original value, right. So, the idea is that we will we will define an 

objective function which will minimize this estimation error here uh and the condition of the 

minimization should be such that, that will give me this uh gain value L. Okay.   

 

So, that is how the Kalman filter is indeed defined here. So, this is my objective then. I want 

to minimize the variance of the estimation error, right, because it is an error, right, it can be 

positive or negative. So, in the long run, I want to do a least square minimization, so, I am 



going to minimize the variance of this estimation error which is a xk tilde, right? I hope the 

objective is clear. So, just to recall that I am trying to minimize this value, absolute magnitude. 

Now, this can be positive or negative.   

 

So, just like the standard technique we have in combinatorial optimization, we will try to do a 

least square minimization here. In effect, that means I am going to minimize the the the 

variance of the estimation error, right. So, the formula for variance as we all know is the 

estimator estimation of uh this expectation over this uh this difference, right, of this value of 

the variable minus the mean multiplied by these things transpose, right. So, basically, that is 

how we we are going to always write an square term when we are doing it over a matrix.   

  

So, uh in this way we define this Pk, right, I mean, we are trying to minimize Pk here at the kth 

step and the definition of Pk is the variance of the estimation error and this is the standard 

formula for variance. Now, uh the mean value of x, uh if I try to obtain it, so, we can check out 

the equation. So, if you take this equation and if you take uh the expectation on both sides, then 

uh well, this is what you are going to get, right. uh From this this equation, take expectation on 

both sides e of xk+1 tilde should be, uh where these are all constant, A minus Lk C multiplied, 

then expectation of xk tilde.   

  

And since uh the expectation will also be of this and this and they are all 0 because these are 

vk and ek are all thus as as per our definition, these are all 0 mean Gaussian noises, right. So, in 

that way, this is what we get. Now, observe one thing, we we assume that the initial state x0 

that we have here, the initial state x0 is Gaussian distributed and it has a mean m naught, right. 

Now, given this uh xk, let us see how is x k evolving. So, the way xk is evolving is that it is a 

linear transformation over a series xk-1, xk-2, like that, right.   

  

So, that would really mean this reconstruction error xk tilde, right, I mean, since the initial value 

is Gaussian distributed and we are essentially doing linear transformations over this multiple 

sequence of linear transformations over this initial value which is Gaussian distributed, we 

would expect that this reconstruction errors mean should be 0, right. I mean, uh this 

reconstruction error will have a 0 mean, right. So, that is why you can always write this thing 

that expectation, once you are going to take it over uh xk tilde at 0, right. So, this term will 

become 0.   

  



I can always write this as 0 because of this Gaussian property followed by linear 

transformations. I mean, physically speaking, if you think the error will be positive and 

negative around the 0 mean value and that is how this is getting set to 0, so, then, all that will 

remain is you want to figure out uh this thing. What is the expectation of xk tilde xk tilde 

transpose? Okay. So, that is the, with the 0 mean of this variable, what you are left to do is 

check the variance and the variance will be given by expectation of this.   

  

So, let us now then go about designing this thing. So, first thing we will do that uh well, I have 

to minimize this thing. So, let us first create a dynamical equation of Pk. That would be my first 

step here. 
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So, you see, just like we have Pk plus Pk, I can simply write Pk+1 something like this, right. 

Right. So, this would give me. So, this is the vector form we have already designed for xk tilde, 

right. And then it is the transpose, so, that would really mean this thing, this same quantity with 

a transpose. So, or we can just write it down here, A C xk tilde followed by a transpose of this. 

That means this row representation would get changed to a column representation.   

  

Along with that, this quantity would have a transpose, right, and the bracket closes. So, this is 

what we are looking at. So, now, so, this I and the second term is minus Lk. Do not think this 

is I minus L of course. So, essentially, you have, you can, you are going to now multiply these 

terms inside and that would generate multiple terms here, a multiple additive terms. So, if we 

just write them down. See, you have a quadratic term, right, it has a nice form, some matrix 



followed by something, so, this would be a scalar quantity and then this original matrix 

transpose.   

  

So, that is a quadratic form. Then at the end you have; yeah. So, you have got these 4 terms, 

all in a; so, you have two of them are in a quadratic form like this and then you have the other 

4 terms and overall this is getting multiplied by this. So, now what you can do is you can carry 

the expectation inside, right, because then this expectation will be applied on here and that 

would if you have applied on this e applied on here, then it would generate the term Pk.   

  

And similarly you see this term, the expectation would be applied here, right, because the others 

are constant, I mean, these are all 0 means, right, and so uh this would give you a 0. similarly, 

this would also give you a 0, right. You have the expectation of this and the expectation of this 

that would remain. So, then what we can write would be something like this, right. The 

expectation is applied here. So, you get Pk and then you have things here.   

  

So, you will have 4 terms when you are you are you have a 1 cross 2 and this transpose will 

give you a 2 cross 1 matrix. So, you have you will in effect have a 2 cross 2 matrix and the 

expectation should get inside here, right. So, what you will get is something like this. Yeah. 

So, this is the final thing that I get and of course if you remember, we have already designated 

these things, these covariance terms. So, this is the variance of vk and this is the variance of ek 

and this is the covariance of vk and ek which we have all defined earlier.   

  

So, this is R1, uh this was our R2 and these two are our R12's, right. So, we can just write this 

thing as in a nice form which would be like. So, if we just break down these expressions, we 

will get stuff like this. So, essentially, this will be getting multiplied, this will be generating 4 

terms and they are just row wise going to be added, right. So, so, here, the first term will be 

getting added to the first term. This is the first term of the product here, right, and plus R1, 

right.   

  

Similarly, the last term would be C P; here the term would be C Pk A transpose here, right, plus 

this is your R12. These are all defined earlier, the covariances. And similarly here and here, the, 

this position term is C Pk C transpose. So, this would be your dynamical update expression for 

Pk here, right. So, fine, we have got a dynamical update equation for Pk and looks like it is in a 



in a quadratic form because well, here at the start, whatever you have, here you have the same 

thing in a transposed way.   

  

And this quadratic equation has a specific interesting form which is already known in 

optimization theory and we will try to use it up to carry on with our uh our goal of coming up 

with a solution to this. So, uh looking at this, uh let me just recreate the equation again on the 

side.  
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So, what you have is Pk+1. So, this is what you have. And if you see, this is a specific form 

which is like this F(x,y), a function uh which looks like. So, you see, this is what you have like 

you have a form like this, right, because if you see this and this quantities are transpose of each 

other.   

  

The covariances are, I mean, so, here you have a transpose, right, so, I mean, these are all 

transposes of each other, so, that works out, right. So, we are trying to find a well-known form 

and we are saying that this dynamic update equation conforms to a well-known form and what 

it what it is known is we want to minimize this with respect to u here, this form, right, just like 

we want to minimize these variance of the error with respect to Lk. We trying to, we are trying 

to identify what is the gain such that this error variance is minimum, right.   

  

  

That is what we, that is what the other target here. Now, what is known from this mathematical 

optimization theory is that now if I am trying to minimize this form F(x,y) with respect to this 



variable u, uh uh I mean, if there exists some M, if there exist some M such that I can write this 

Qu, this thing as multiplied by, I mean, Qu times M to be equal to, Qu times M to be equal to 

Q; sorry again, Qxu transpose, if I can write something like this, then the form of this function 

becomes. So, this is not y, this is u of course, there is no y here in this function.   

  

Then, well, F(x,u), so, what we are really saying here is that this dynamic equation is of this 

form and we are trying to minimize this thing with respect to this u, okay, and if I if I am doing 

applying the completion of squares technique, then uh under the situation that this kind of an 

M exists, like if I multiply xu by M, I am getting this term, if that happens, then I can simply 

write this up in this form. So, you see, that can that can happen, right. So, you will just need to 

replace this with this form.   

  

And if you simplify, something like this would come, right. So, this this comes. And now if 

you see, uh this is a special form and we will be trying to figure out that under this assumption 

that if the M exists, what is the value of u so that this form is minimized. Because then, if we 

can cast the same problem here because it is of the same structure, we can also find out what 

is the value of L so that Pk Pk+1 is minimized. Okay. So, fine, we will end this lecture right here 

and in the next week we will start from here. Thanks for your attention.  

 


