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Hello and welcome back to this lecture series on Computational Foundations of Cyber 

Physical Systems.  

(Refer Slide Time: 00:35) 

 

So we will start our week 10 coverage. So here we will be focusing on neural network-

based controller design for cyber physical systems. As we can understand that neural 

networks and data driven system and methods are becoming very common in our day 

to day life as well as large system design computational cyber physical even hardware 

systems also, okay.  

(Refer Slide Time: 00:58) 



 

So for getting on with this, since we want completeness in the course and we do not 

assume that you are coming here with a background in AI, ML, neural networks and 

stuff, we will just start with the basics of NN and then we will see that well how NN 

driven control really works in practice.  

(Refer Slide Time: 01:13) 

 

So if we try to introduce neural networks, so this is basically a network of simple 

processing elements or artificial neurons, which try to achieve a complex behavior. So 

the way neural networks typically work is first they require some training. That means 

you have some data set and using that you define the parameters of a neural network. 

 

 



And when a neural network is trained, what it represents is a function, a nonlinear, 

possibly high dimensional complex function, which gets represented by this. And inside 

a neural network, what you have is at an atomic level, you have neurons. Neurons are 

basically small, functional forms, okay. And they are arranged in a specific way. They 

are layers, so it is like it is like a pipeline. 

 

 

So if you look at a new neural network it is nothing like but a pipeline, where each stage 

of the pipeline is like a layer and inside a layer you have a set of neurons. So some data 

is coming, it is a forward I mean, it is it is just like a data stream going inside the pipeline 

and coming out of the pipeline with some transformations. So you have data coming in 

here. In this stage of the pipeline, there are certain neurons. 

 

 

They will produce some output based on these data. These output will propagate it to 

the next stage, which will again contain some layers, right. And in that way, they will 

go to the finite layer final layer, which is called the output layer from which I will get 

some outputs, okay. Depending on the number of layers, we will have a depth. Each of 

the layers are representing elementary functions. 

 

 

Of course, those elementary functions need parameter values. These parameter values 

get freezed during a training process. And once the training is complete, all the 

parameter values are freezed. Essentially you have a full network and that full network 

may be representing like I say, a complex function F which is differentiable and this is 

high dimensional. 

 

 

That means x may be a, multi I mean, I mean comprising many variables x1, x2, x3, xn, 

x100 like that, okay. So the target of the neural network is that well, there is some 

unknown behavior somewhere, but that unknown behavior’s output is observable with 

respect to an input. We are trying to capture based on some inputs and outputs that I 

know about that unknown system, what is the mathematical function that best captures 



the dynamics of this unknown system. So that is what typically an NN artificial neural 

network will do.  

(Refer Slide Time: 03:49) 

 

So uh at a basic level, let us first talk about each neuron and a single neuron or a 

perceptron is a simple operational unit, which does the following. So what it has is there 

are some weights. It takes a R array input. So let us say this is the input vector okay p. 

So p is a vector of individual scalar components p1 to pR, okay. Now this neural network 

will have a weight matrix W comprising this kind of, so let us say this is neural network 

level 1. 

 

 

So w1,1, w1,2 like that, let there be I mean since they are R inputs to process there must 

be R weights so that there is a valid dot product okay. So then, at this point here, we 

will be, what we will be doing is we will be carrying out a weighted sum like a dot 

product here. So with that we will get a value let us say that is n okay? So this is how 

using this summation we will represent this node. 

 

 

So essentially given a vector input this weight matrix is converting that vector input to 

a scalar output okay? And what will happen is this scalar output will be offset by a 

given bias value b. That means n will be equal to this Wp plus this bias value b okay. 

And in that way I have reduced the input vector to a scalar by first weighting the 

components then adding them up and then giving the bias. 



 

 

And then this n I will pass through a final stage function. This function is called an 

activation function okay, so that as a function of n and I will get some final activation 

output here. We will we will see what an activation function is, how those things are 

defined.  

(Refer Slide Time: 05:42) 

 

So that is the, whatever we said till now is just about one neuron. Now I can arrange a 

set of neurons here, okay. So once I arrange each of those, so in this way you can see 

here I have this one one neuron represented by this weight matrix W and the bias b, 

right. Now what I can do is I can have a collection of such neurons. 

 

 

So this collection of neurons can be represented by weight matrix where the such that 

overall I have 2 cross 2 weight matrix and it is such that each row of this weight matrix 

represent one neurons operations, okay. So so that is fine. You have this kind of 

representation here and with each of these weight matrices, so for weight matrix one if 

you see earlier this was about one new one weight matrix right for one neuron. 

 

 

Now I have this S number of weight matrices with S neurons right. So for each neuron 

you have one row here and with everything together you have this two dimensional 

weight matrix. That means the set of R inputs that input vector of size R it is feeding 



all these individual neurons and they also have their individual biases here b1, b2 up to 

bS, okay. 

 

 

So that finally, what happens is here you get a vector n 1, a vector n which is nothing 

but a collection of these individual values n1, n2 up to nS okay. And each of these values 

if you pick up some ni here how do you get it is n i equal to what? You have p1 times 

Wi,1, p2 times Wi,2 like this up to pR times Wi,R, right. And with that, you will add this 

bias for that i-th neuron bi. 

 

 

So this will give you some ni. And with all those values of ni you have this final vector 

n here. And you will apply the function, final activation function f component wise on 

this vector. So essentially it will be f (n1). So that is what you get as an output. So overall 

the your activation value is this and this is given in a vector form like this and it is 

represented graphically like this with a set of neurons, set of activation functions in the 

activation layer and the inputs all written in a vector form nicely here. 

 

 

So this coverage has been from a tutorial in the American Control Conference in 1999 

which was given by Martin Hagen and Howard B. Demuth. They also have a very nice 

book on neural networks which you can just consult for this purpose.  

(Refer Slide Time: 08:59) 

 



Now so that was just about one stage of the pipeline, right. Now I can, if you see I can 

just I can just cascade many such stages now, right. So so for parallel operations for 

this kind of n new S neurons in one layer what what I can write is I can represent this 

weight matrix here, I mean this entire thing here right with S number of weights, I mean 

all these things etc., by this single node right. 

 

 

So this weight matrix W which is of size R cross S or sorry S cross R can be represented 

by this single node here. And as we discussed, there will be S number of biases and 

there will be R number of inputs, they are all going in here. And S number of biases are 

feeding here so that you get an S sized vector n on which an activation f will work so 

that you can get an S sized activation which is a vector a like I computed earlier. 

 

 

All I am saying is this entire thing we are drawing here can be represented in a vector 

form like this. And like I said that we can now add multiple layers here. So you can see 

what are you getting as input getting as output given an input. You gave a you gave an 

R sized input of vector p, which was processed by this S cross R sized weight matrix, 

and you get an S sized output, right? 

 

 

So given this S sized output a 1 of size S1 cross 1, this 1 is now coming, because let us 

call it at the stage one of the pipeline or first layer. So this is your input, this is stage 

one of the pipeline or layer one. So layer one’s output, let us call it a 1, okay. And we 

are representing this layer one operation by this equation f (Wp + b) and since this is 

layer one, we are just sub superscripting with 1 here. 

 

 

So a 1 equal to f 1 W1 b1 here, so that is what we have. So we get as output S cross 1 

sized matrix a. So this is again layer one. So we are calling it S1 cross one sized matrix 

a 1 okay. So this S1 cross one sized matrix called a 1 is being fed to the second layer. 

In the second layer again what you are going to have is a W of size let us say some S2 

cross S1 and for b you should have some S2 cross 1 number of bias values. 

 



 

So here you will get a vector n2 in the second layer output whose size is S2 cross 1, just 

like it was S cross 1 here. This S is same as this. Here we chose S2 with this existing S1 

number S1 should match with a 1 here right. And we got an S2 sized vector. It is 

processed by an S2 sized activation layer, so that we get an S2 sized activation here, 

output in the second layer. 

 

 

And that will be processed again by the third layer so that you get an S3 sized activation 

here called a 3. So in effect, if you write this entire thing, if you write all these, if you 

cascade all these pipeline stages, layer wise, what you are getting is the first layer 

activation 𝑊𝑝
1 + b1 will be, is being processed by the first layer activation, which is f1 

here, right. You get the output, right. 

 

 

So this is your output here. Then it gets multiplied by W2 and it gets added with the bias 

b2, right? So that is that is your output here. So if you see this, this is your output here 

which is being processed by f1 here. So you come up to here, gets multiplied by W2 

here. Then gets added with the bias of this stage which is b2 here. Then it should be 

processed by this activation layer f2 here, right. 

 

 

And then it gets multiplied by the weight matrix W3 here. Again gets added with the 

bias of the third stage here. And this entire thing will be now passed to the last activation 

layer the third layer which is f3 here. So that is the a 3, right. So if you have, so here we 

are just showing a picture up to three layers, but if you have M such cascaded layers, 

so in general, if you just change these three to M this is what you will get as the equation 

right. 

 

 

So now in your equation, you will have a M. For that you will have an fM. Here you 

will have WM working on f M-1. M – 1 is application of the activation layer working on 

this and it will continue like this, right. So overall for a feed forward neural network, if 



you are looking at the final polynomial functional form, it should be something as 

complex as this, right. The question is how do I design the parameter values. 

 

 

And also why am I going to do that, we will explain that. But now let us also talk about 

what is activation? We have been just talking about this activation function.  

(Refer Slide Time: 14:14) 

 

Typically, these are functions which are used to what we call as activate or deactivate 

nonlinear components. So basically they are elementary classifiers, okay. So let us see 

an example. For example, these are the popular activation functions which are used, 

okay. For example, you have this rectified linear linear unit activation. 

 

 

What it does is given the input data, it will produce it as an output like this, like 

essentially it is a function that suppose the input is a it will either produce a or 0 in case 

the value is negative. That means, if the input to the activation layer is negative, your 

rectified linear unit the value output will be 0. And if it is positive, it will output that 

positive value. So the graph looks like this that as long as the input, see this is your 

input, right. 

 

 

So this is your input, I mean on this side the input is negative, on this side the input is, 

this side negative, this side positive. So as long as it is negative, it is not passing on the 



negative value. It is just outputting 0. The moment it becomes positive, whatever is the 

value it is passing it. So it is a gradient 45 degree line, okay. And also you have 

activation which is the logistic sigmoid function. 

 

 

So what it does is this is your 0. At 0 it will produce an output of 0.5 and then it will 

increase smoothly and eventually it will saturate it out, output of 1. And whenever it is 

negative, it is decreasing smoothly, from 0.5 it is decreasing and then it is settling at 0. 

So the logistic sigmoid function will always give you a value which is between 0 and 1 

and in between it will increase smoothly. 

 

 

And also you have this tanh the hyperbolic tangent function which is also another 

candidate activation function. It looks almost like this, where the bounds are, instead of 

0 and 1 the bounds are like this, that it is -1 to + 1. So let us understand why these 

activation functions are there. These are primary there to introduce non-linearity in the 

transformation of input to output. Now why do I need the non-linearity? 

 

 

That is a very important thing, right. The question is my inputs and the weights and the 

biases they are all linear components, right. But I want my function to be smooth, 

differentiable. And I also want my overall function to be able to capture arbitrarily 

complex behavior. Now complex is typically nonlinear behavior, right. I mean, it 

should be smooth and differentiable. 

 

 

So I mean, the functions should be nonlinear, so that they are smooth and differentiable, 

right. And I also want my overall neural network to capture complex nonlinear 

behavior, right. So so for that, we will like to introduce non-linearity in the entire 

transformation process. If you see the weight matrix multiplication, the bias solution 

basically, these are linear transformations that are happening, shifting that is happening. 

 

 



So in order to introduce non-linearity we need to have these kind of these kind of 

activation functions which are inherently nonlinear. If you see all of these have 

nonlinear trajectories here. Okay.  

(Refer Slide Time: 17:50) 

 

Now the question is well, how do I learn these values of W and b, because they are not 

known right. So first of all, what is known to me? So when I am going to train a neural 

network, like I said that we are assuming there is a closed system to which we have 

given some inputs and the system has produced some outputs, okay. So given those 

inputs, the inputs are these values p’s right, this vector p’s. 

 

 

We obtain some outputs, the outputs are these a's, right. So there are Q number of 

training inputs, capital Q, 1 to capital Q, for each of the training inputs, the the actual 

value, the reference that given some, given that training input, the actual output, or the 

target reference is tq. Whereas given some input pq here, the inputs are p is here, right. 

 

 

So given some q-th input pq, the training output expected is t q, whereas what the neural 

network actually gave me, let us say it is aq, right. So this is the error and all we are 

doing is we are creating a quadratic objective function with respect to this error and my 

objective is simple right. I want to just minimize this quadratic objective function. 

 

 



So what we want is we want to suitably parameterize this function f that means figure 

out the values of W and b. So you if this F is a function of x, where x is W and b, okay. 

And what we want to do is we want to we want to choose suitable W and b, so that this 

loss that is the errors, the errors in their quadratic expression, this loss is minimized, 

okay. And the loss is defined as F as a function of W and b, okay. 

 

 

It is hard to solve analytically. And that is what for we for this we have the famous 

backpropagation algorithm. So what this backpropagation algorithm does is it will, it 

will start with an initial value uh x m 0, okay. It will start with an initial value x m 0, 

and update the network parameters. In every k-th iteration, it will update the network 

parameters of every every layer following the equations, and it will converge towards 

some minimum loss, okay. 

 

 

So so so that is the point. I mean, we are just trying to figure out how the loss can be 

minimized and what are the values of the weight matrix W and b, for which the loss 

essentially gets minimized. So let us see how that can be done.  

(Refer Slide Time: 20:31) 

 

So what the backpropagation algorithm does is it updates these network parameters of 

every m-th layer in every k-th iteration. So let us say I am in some intermediate iteration 

of that algorithm. And right now the ij-th weight matrix for the m-th layer, so if you can 



remember, let me get the notation done first. So this is my m-th layer some layer m. 

Here I have Wm, and inside Wm, I have an ij-th component, right. 

 

 

So we call it as w i,j with a superscript m. And this is my value of w m i,j in the k-th 

iteration, and I want to update it to some 𝑤𝑖,𝑗
𝑚 in the k + 1-th iteration, okay. So what we 

are saying is, the update will be given by this equation where we are calculating that 

well, what is the rate of change of F with respect to the rate of change of w at this point, 

okay. 

 

 

And you multiply that with something called learning rate, okay. So that means, and 

you subtract it from here. Let us understand what it means. It means suppose, see what 

is my objective? My objective is that I want to minimize F, okay. Now we are having 

some choice of value of 𝑤𝑖,𝑗
𝑚. We see what is the derivative of F with respect to 𝑤𝑖,𝑗

𝑚 at 

this point. 

 

 

And if we see that the value is positive, that means well, if I increase w, F is going to 

increase. That means, if I decrease w, around that specific point which is 𝑤𝑖,𝑗
𝑚 F will 

decrease, and my objective is to decrease it, right. So I will decrease F in, basically I 

will make the algorithm move the value of w towards the direction in which F is 

decreasing. That is what I should try to do. 

 

 

So from the current estimate of w, I will, I will subtract this rate multiplied by this 

learning rate. So let us, let us just think something like this. I mean, suppose you are 

you are moving around, okay. This is the time axis and here you have you have a value 

of speed, okay. Suppose right now your speed is here, and you want to calculate the 

speed after some interval t1. 

 

 



So what you do is you, you take the initial value here, and you multiply this interval 

with the rate of change of x, which is here, that is the what is the acceleration here. So 

you take the value of speed here, then you add acceleration times this value t1, okay. 

Now this value of acceleration is what the rate of change of speed at this point, okay. 

The smaller you take t1, the more, the more accurate result you get right, by choosing a 

smaller time step. 

 

 

Because the rate of, the acceleration may be something here, the acceleration may be 

something larger or smaller in between, right. So what I really evaluate here is the rate 

of change of speed at this point. And if I take t to be small, then somehow I can say that 

well the rate of change of x is kind of constant inside the interval. So we multiply it by 

the rate of change you computed and that gives you what is the speed at this point or 

this point, right. 

 

 

So same thing we are doing, but not in the time axis, but in the in the in the direction of 

w, I mean, I mean in the direction of this change of w, okay. So what we do is at that 

value at my current estimate of w, I see what is the gradient of f, if it is decreasing or 

increasing, say it is positive. So that means since I, my objective is to decrease f, what 

I will do is I will move my optimization to the opposite direction. 

 

 

So by moving in the opposite direction, essentially it means that you multiply this 

gradient with a learning rate and you subtract it from your current estimate of w. That 

means, if I decrease w around my current estimate, F is supposed to decrease. Since my 

objective of F is to decrease, I will choose to subtract from w this value. Now what 

happens if I increase the learning rate? 

 

 

So if I increase the learning rate that means my approximation may not be good, right? 

Because that means I am assuming this rate to be same, around the larger, so suppose I 

am in an in-dimensional space, and right now I am estimating everything here for my 



value of w i,j m, right. So if I come this direction and if I take a larger step. For a larger 

step, larger alpha means a larger step. 

 

 

If I take a larger step in between the gradient may have switched signs, right. From start 

decreasing it may, from increasing it may have gone to decreasing, right. I do not want 

to miss that switching. That is why this learning rate should be small here. I mean, there 

are several ways to choose learning rates, more on that is later. So fine. So using this 

equation, we will update the value of w from the k-th estimate to the k+1-th estimate. 

 

 

Exactly by similar logic we can also choose the update update on the value of the bias, 

okay? Now the question is how do I put these things into practice, okay. Now the 

sensitivity of the loss function we will try to define that because that is also essential. 

You see, we have already defined the loss function and with respect to every input, we 

want to define what is sensitivity and because it is a key element here that is actually 

backpropagated. 

 

 

So what we do is we try to compute what is the rate of change of this loss function with 

respect to the value n that is the value computed using the weight and the bias 

transformation before the activation, okay. So so what we do is we define this quantity 

delta F delta n i as the sensitivity of the i-th stage okay here. So if you see n i means 

some some i-th stage and in that i-th stage what is the sensitivity of the loss function. 

 

 

That means how how does the value of F change with respect to that n-th stage, that i-

th stage output is what we define as the sensitivity and we will see that why it is 

important. 

(Refer Slide Time: 27:04) 



 

So observe one thing we know that how to compute this n i right. n i that means the i-

th stage n well, I mean we and what and what is its value for the m-th estimate. It is 

given like this right. It is basically the summation of wi,j aj plus bi okay. What is aj? aj 

is the m minus the previous stage value, right. So j equal to 1 to sm-1. So there is my 

thing right? 

 

 

And what we are doing is, so this is this is my n here right and what we are doing is, 

sorry let me just repeat this thing. So m represents the m-th stage here okay. Yeah m 

represents the m-th stage here, like you see n2, then n3 like that. And in the m-th stage, 

it has a component, we talk about the i-th component here as 𝑛𝑖
𝑚. So let the definition 

be there. 

 

 

So when I say n m i, it represents m-th stage i-th component value before activation. 

You may you may like to pause your video here and go back to that picture earlier and, 

and corroborate with that. So that is how we define that the rate of change of F with 

respect to this thing is what I call as the sensitivity of the function in the m-th stage with 

respect to the i-th component of that outputs of the stage output. 

 

 

So well we will see why it matters, because, we are doing something here right. So once 

we are doing here we want to figure out what is del F, del wi,j, what is del F(bi)  right. 



We will see that how sensitivity helps in that respect. So first let us go back to what is 

n i m. n i m is simply what is the m minus 1-th stage activation output, you take that 

and you do a vector multiplication with this i-th stage weight that is wi,j where j value 

is changing from 1 to sm-1. 

 

 

So just for reference here in any stage you have some sm right. That is s m is the number 

of elements here, right. So if you see s1, s2, s3 like that and we are talking about some 

m-th stage. So at the m-th stage you have in that vector these many things, these many 

values from 1 to m – 1. And in w you have wi,j in the m-th stage, right. So and in the 

m-th stage, you have the input coming from the m – 1-th stage. 

 

 

So you will have w a m - 1. So if I just write it in the vector form, it is w m, the m-th 

stage weight multiplied by a m - 1 right, plus the m-th stage bias. Let us see. And here 

all you have is it written in using the vector form. And since I am focused on the output’s 

i-th component, so further what I do what I am doing is I am only looking at the i-th 

component right here, okay. 

 

 

So for looking at the i-th component, what we are doing is we are keeping i fixed and 

we are letting the j vary like this. So you can you can verify the calculation like that.  

So let me let me just repeat what I just said. So if you see what is the i-th stage vector. 

The i-th stage vector is something like this, right. So the i-th stage output is some n i, 

the m-th stage, sorry the m-th stage output is some n m, right.  

(Refer Slide Time: 31:29) 



 

So if I look at this n m, it is given by some Wm, which is the m-th stage 2d matrix, and 

then the previous stage output m - 1 plus this m-th stage bias, right. So that is what we 

have. Now here I am looking at the i-th component, right. So since this Wm is a 2d 

matrix, and here I have this, and plus this, and I am looking at some n here, this is equal 

to this n m, right? And I am looking at some i-th row here. 

 

 

So if I am looking at the i-th row, that means for that i-th row I should take this and I 

should, I should just some I should take all the elements in the i-th row and multiply 

them with this and then do the addition with this right, and take the sorry and take take 

the do the addition with the i-th component. So this is the i-th component for the bias. 

 

 

And then from the i-th row, you take all the components and do a dot product with the 

full thing here, right. This a - 1, right. So that is what you do with this change with with 

varying these for the i-th row you have all these w i m right, 𝑤𝑖,𝑗
𝑚 right. So you are just 

varying the value of j. That means you are moving over this row and you are taking all 

these values from here, right. 

 

 

Because you are taking this. So this essentially is a m – 1 1, am-1 sorry. So let us see 

how a looks like. So that is nothing but 𝑎1
𝑚−1, 𝑎2

𝑚−1 like that a m – 1 whatever is the 

dimension here, right? So for that you have this j changing and you have you are moving 



over this row. So you have this j changing and you are multiplying them and then you 

are adding this 𝑏𝑖
𝑛, right. 

 

 

So that is what is happening here. So this explains how the sensitive how n i um, this 

explains kind of how the value of n that means the i-th component of the m-th stage 

output is actually calculated and the i-th component’s value you can get through this 

equation for the m-th stage output. And then let us see that well how that helps me to 

define this rate of change of F with respect to w and rate of change of F with respect to 

b. 

 

 

So this is my rate of change of F with respect to w in the m-th stage. And what we can 

do is we can apply the chain rule of differentiation and we can write this as well del F 

del 𝑛𝑖
𝑚. That means what is the value of F with respect to n in the m-th stage multiplied 

by what is the derivative of n in the m-th stage with respect to 𝑤𝑖,𝑗
𝑚, right. We can do 

that. 

 

 

So if we if we write it using this chain rule, then this first first thing, the first component 

becomes my sensitivity because that is how we have defined sensitivity, okay. And then 

the second component is, as you can see, well this is simple, we have already obtained 

this expression of 𝑛𝑖
𝑚 right. 𝑛𝑖

𝑚 has this thing 𝑤𝑖,𝑗
𝑚 𝑎𝑗

𝑚−1 𝑏𝑖
𝑚. So you want to take a 

derivative of 𝑛𝑖
𝑚 with respect to 𝑤𝑖,𝑗

𝑚. 

 

 

Observe that all these things are happening on the k-th stage estimate which is fine. So 

if I take this derivative with respect to wi,j in the m-th stage for the k-th step of the 

iteration, then I will definitely get 𝑎𝑗
𝑚−1 no doubt about that, right. So here I get 𝑎𝑗

𝑚−1 

and the first term is my definition of sensitivity basically the rate of change of F with 

respect to the output of that stage before the activation, which is n okay. So fine. 

 

 



And similarly for the other one which is the term we have not written here is basically 

this term del F del b. For that term, we can again apply the chain rule del F x k del 

𝑛𝑖
𝑚(𝑘) times del 𝑛𝑖

𝑚(𝑘) del 𝑏𝑖
𝑚(𝑘). Now again, if you see 𝑛𝑖

𝑚(𝑘) and you have b i m, 

so derivative of del 𝑛𝑖
𝑚(𝑘), 𝑛𝑖

𝑚(𝑘) and del 𝑏𝑖
𝑚(𝑘) that is 1 right. So this becomes one 

and all remains is this which is again your sensitivity, okay. 

 

 

So so fine. You have 𝑠𝑖
𝑚(𝑘) as here and here you have 𝑠𝑖

𝑚(𝑘) times 𝑎𝑗
𝑚−1. So now we 

have the sensitivity. The good thing about the sensitivity is it can be back propagated 

to the m-th layer. The question is well, I mean, if you if you look at the structure of this 

equation that we defined earlier, we are giving a weight update rule, right. But where 

am I supposed to do the weight update? 

 

 

I am going to do it in the m-th layer and definitely, that information needs to go back 

to the previous layer. And similarly, there will be a weight update happening in the 

previous layer. That is how it should work right. So if I say that well I have done this 

update in the m plus 1-th stage, we will backpropagate it to the m-th layer like this 

following.  
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So suppose we are doing any sensitivity computation here, we define 𝑠𝑖
𝑚. So we write 

that as del F del 𝑛𝑖
𝑚. So that can be del F del a i m that is the activation times del 𝑎𝑖

𝑚 



del 𝑛𝑖
𝑚 right. So we can write this. Now this also means that well if I take this part, on 

this if you apply the chain rule you can write del F del n i at m + 1 times del n i at m + 

1 with respect to del 𝑎𝑖
𝑚 okay. 

 

 

And you have this this thing which is derivative of the activation output with respect to 

the derivative of the activation input, right. This is nothing but the activation functions 

derivative, right. Because if you see 𝑎𝑖
𝑚 is nothing but the activation m-th layer with 

argument 𝑛𝑖
𝑚 right. So if I take derivative of 𝑎𝑖

𝑚 with respect to derivative of 𝑛𝑖
𝑚, that 

is derivative of basically del del x f x form we have here. 

 

 

So it is just you can write it in shorthand as, that is what we have here. Basically a 

derivative of the activation function with respect to its argument itself, okay. So let us 

understand what we really did. Sensitivity was defined with respect to the the loss, the 

loss’ derivative with respect to that layer’s output before activation. We changed it with 

that layer’s output after activation times the derivative of the activation, okay. 

 

 

And then what we said is well, that layer’s output after activation can be written like 

this, that that layer’s output with respect to the next layer’s n value. And the next layer’s 

n value is changed with respect to the current layer’s activation, okay. There is a reason 

why we are doing this, which is simple. So you see, now it can transform it to this right, 

which is the first thing remains same, derivative of F with respect to n.  
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So if I draw a picture, so this is, so let us draw a nice picture here. So you have 𝑛𝑖
𝑚, 

going through this activation f and it is generating 𝑎𝑖
𝑚 okay. And then it is going through 

this wm+1, bm+1, the m + 1-th layer and it is generating nm+1, right. So that is that is what 

is happening here, right. So essentially, what what we want is the derivative of F 

derivative of F with respect to with respect to this, right. 

 

 

Because that is how we have transformed the equation. So we keep it as this, derivative 

of F with respect to nm+1 its i-th component times what did we really have? The 

derivative of the output here okay, this one with respect to this, the derivative of this 

with respect to this. So I mean, this is obvious, because what is the relation? nm+1 is 

very simply Wm+1 times a m plus bm+1. That is how it is right? 

 

 

So if I take del nm+1 with respect to derivative of am, we must get Wm+1 and if that is 

happening for all the i-th components, then that is it, 𝑊𝑖
𝑚+1 in its transpose form of 

course, because the matrix is represented that way. So fine, that is what we get, right? 

So this is this is the reason why we are writing sensitivity in this form, and we are 

linking it with the next layer, okay. 

 

 

So because we are now able to write the sensitivity in terms of the next layer sensitivity, 

the next layer weight matrix, and this current layer’s activation function’s derivative. 



So you can see we are, we are changing something here in the next layer. So if I change 

if you update the sensitivities, if we if we update the w’s here, with that we can now 

update the sensitivity here in the in the previous stage, right. So that is the trick. That is 

about backpropagation.  
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So this algorithm is updating the weights and biases in every case iteration in this simple 

rule, right. So what we are happening we are doing is suppose we have in the in the in 

the in the k-th update, we have some estimate of Wm okay. And we have some estimate 

of s, we have some we have and we have we have the values of a etc., etc., okay. Now 

we apply this learning rate equation here. 

 

 

So if you just go back, so this was it right, and we had this and then we were trying to 

figure out what is this del F del w and then we figured out that well, del F del w is 

nothing but s i a, some  a this, s i I mean s times a, s m times a m - 1. And then we came 

up with this idea that well it can be represented by the next stage values of s w and this 

stage activation’s derivative, right. 

 

 

So once these things are known, what can I write overall? Overall I can see that well w 

m in the k + 1-th  stage in the k + 1-th stage in the vector form can be linked up with W 

m in the k-th stage right minus this thing, which is the learning rate is there, and then 



we needed the derivative of F with respect to W and that became my derivative of F 

with respect to W became s i m and s i m times a – 1. 

 

 

And then we have figured out that well how to write that in terms of s m + 1. So you 

have s m then a m - 1. So let us write those things here. s m m – 1 and  the the learning 

rate right there. And b if you see earlier b, this was b right. b was this b in the k + 1-th 

stage equal to b in the k-th stage minus alpha times s, right? So the minus alpha times 

s. So these are all in the stages here. 

 

 

So this is this is this is right coming right from these two equations, okay. You have got 

del F del w as s a, s a m – 1 and you just put it there Wm minus alpha times s m a m - 1 

transpose. So that is how it comes. And similarly, for the equation in the b. So this way 

you get the update equations for W and b. And the thing is, we have already figured out 

that well, how to link the sensitivities across stages using these equations. 

 

 

How the sensitivity in the m-th stage of the layer can be backpropagated to the m + 1-

th layer using this equation. So I mean sorry the the I mean the value of sensitivity and 

weights in the m + 1-th layer how they can be used to update and backpropagate to the 

previous layer, right. So what we can do is well, we can figure out all the things in the 

previous layer and using using those values of sm+1 then wm+1 etc., you can now update 

s in the previous layer. 

 

 

Once you have updated this in the previous layer, see I already know what is my am-1 

etc., values right. So once I have this knowledge of s m you can put this value of s m 

here and you can evaluate for the previous layers also, okay. So in this way, I have this 

update equations across these time steps, case time step values of W and b I can use 

along with the sensitivity values to update the k + 1-th time stay values of W and b, 

okay. 

 

 



And we backpropagate the sensitivity values in this equation and overall for, what about 

the activations derivative, we need the activations derivative, well that is easy to 

compute, because the activations have got their well-formed formula right. So overall 

here I have in backpropagation what we call as a forward and backward pass 

combination. 

 

 

So in the forward pass we have this this this computations of n is done right. So what 

we do is well, we compute the I mean given these inputs p1’s and the outputs a’s right, 

you compute these layer values, and you compute these values of a’s here at the output. 

And then what you do is you use the backpropagation equations, and you will just figure 

out what will be the weight updates that are happening and what will be the sensitivity 

value updates that are happening okay, in the backward pass.  
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And this will continue and and in that way you will get the uh you will get the values 

of the W’s and the b’s figured out in such a way that you have the function I mean with 

the minimized amount of loss and of course, once the value of the loss is minimized, 

you have it nicely approximating the unknown polynomial, I mean the unknown 

relation in terms of a complex polynomial, because this is what you are trying to 

evaluate. 

 

 



And you start with a seed, you keep on doing these forward and backward passes and 

that is it you have the values done. So, with this, we will end the lecture here. Thank 

you for your attention. 

 


