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Lyapunov Stability, Barrier Functions (Continued) 

 

Welcome back to this lecture series on Foundations of CPS. So, in the previous lecture we 

proved Lyapunov direct method. And so, let us see some application of this method here. 
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So, if you remember before doing that proof we were talking of this example of our system 

function a non-linear system, as you can see. And we assumed a candidate Lyapunov function 

from there and we showed that well how the function will look like? right If we plot it against 

x1 and x2 in this plane. Right. And here we are having this level sets that means the values of 

x1 and x2 for which the function V will will be actually getting evaluated to some constant. Ok. 
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So, let us come back to that example. So, assume in that function that 𝜆1 and 𝜆2 is 0. So, V(x) 

is simple 𝑥1
2 + 𝑥2

2. If you take a derivative, so, you have so, with respect to time then you have 

well this. So, if you remember what was your x?  
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It was given by these systems right −𝑥1 + 2𝑥1
2𝑥2 and 𝑥2̇is given by -x2. Right.  
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So, ah when you take the derivative, ah it will be basically you have to take the derivative with 

respect to x followed by ah the derivative of x and x1 and x2 both with respect to time. Right. 

So, ah if you if you calculate that ah you will you will arrive at the derivative of V as−2𝑥1
2 −

2𝑥1
2𝑔(𝑥). ok Now where g is given by this 1 − 2𝑥1𝑥2. ok So, ah in general, if you are doing 

this for the original Lyapunov function. 

 

 

So and with 𝜆1 𝜆2 being there you had which is your f(x) and you already have this vector form 

for f(x). Right. So, if you compute this derivative here, so that is what you get. And then if you 

put 𝜆1 and 𝜆2 ah as 1. all right. So, this is what I can write. Right. So, eventually the derivative 

if I put 𝜆1 and 𝜆2 as 1 it is −2𝑥1
2 − 2𝑥2

2 + 4𝑥1
3𝑥2. Ok 

 

 

So, ah yeah this is x2 here. So that is essentially minus 2 x2 square minus 2 x1 square times 1 

minus this. Now, why are we writing it in this form? The reason is see my target is to show ah 

that V dot is negative. So, this term being a square term with minus so that is negative. Right. 

And that means as long as I can say that this g this part g(x). So, let us call this as g(x) Right. 

So, I I have minus 2 x2 square minus 2 x1 square times g(x) right where this is 1 − 2𝑥1𝑥2. 

 

 

So, as long as I am located somewhere where this is ah positive that means x1 times x2 is less 

than half right. As long as this happens Ah V the derivative with respect to time of V is 

negative. Right So, ah we we see that will ah if I come, if I if I if I take this region around the 



origin. right ah, So, I I can show that the system will be ah locally asymptotically stable around 

that region. ah As long as I have this condition and getting satisfied. Ok. 

(Refer Slide Time: 06:11) 

 

And one small correction here so, in this, when we were deriving ah the Lyapunov function, 

please note that this is decreasing with time because the derivative of V is with respect to time 

is negative. Fine. Ah So, we have seen that well how early Lyapunov function can be assumed. 

Ah We have to so, if you have to apply Lyapunov theory, you have to be smart about choosing 

this function like we see in this example. 
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Now, let us take another example ah from the same material we have been covering here. So, 

we have a spring mass system, ah of mass M. right. It is connected to the spring ah and x equal 

to 0 is the point when no force is exerted by the spring ah since by this spring. Right. So that is 



the equilibrium point. And otherwise what you have is this, right. These are the these 

parameters of your spring mass system ah right ah so, the force that you have ah here is given 

is defined by this. Ah 

 

 

That F of ah x dot is a kind of minus delta x dot. Ok. So, for all ah positions ah which is not 

the origin. ok ah You have F(x1) equal to 0, ah implying x1 equal to 0 and otherwise you have 

ah this thing happening. So, when you are at the origin, there is no force and whenever you are 

not at the origin. Ah. The spring will be exerting a push or pull force on the mass air and the 

amount of this force is given by this Ah um this F(x) here. Right. So, if you are trying to derive 

the dynamical equation of the system. Ah 

 

 

The acceleration of ah this mass ah x double dot would be divine defined by this total force 

that you have which is ah minus of f(x) minus delta x dot and so, fine. Let us lets Let us just 

go about defining the state variables of the system. So, ah if we just assume that let us say for 

simplicity, ah m equal to 1 with the 2 state variables x1 and x2. OK. ah So, x 1 is basically ah 

this I mean the deviation from this origin is given by x and that is my x1 and x2 is nothing but 

x1 dot. 

 

 

Because it is a I am eventually going to compute x2 dot which is the acceleration. So, I will 

need these 2 state variables x1 dot and x2 dot. So, x2 is speed, x1 is the displacement. So, x1 dot 

is nothing but acceleration x2 ah sorry ah this displacements variation is nothing but the velocity 

x2 and x2 dot is the net acceleration here assuming ah the for inside the force equation. M is 

being set as 1 so, this is what you have. 

 

 

So that is pretty much your definition of the system F x. So, for this system ah we consider this 

as a candidate Lyapunov function.  

𝑉(𝑥) = ∫ 𝐹(𝑠)𝑑𝑠 + 1/2𝑥2
2

𝑥1

0

 

So, if you see it is defined as an integral from 0 to ah this state variable x1 of ah sum this 

function F OK plus half of x2 square. Ok, So, one thing to note if you see here, I mean this is 



this is going to be always positive. So now, if you do ah derivative of this function with respect 

to x, so, ah there would be two components. right ah. 

 

 

So, in one you will have F because it is basically an integral of a F. right. So, if you take the 

derivative, it will be F which is defined over the first component x1 because F is defined over 

x1 only. And the other component will will be x2, because as you can see, it is half of x2 square. 

So, derivative it is 2 x2 ah the 2 and 2 will cut I mean it, they will cancel each other and you 

will generally have this x2 in the second component. 

 

 

So that is your derivative with respect to x. right So now, if you take the time derivative. So, 

you have F(x1) and x2 I mean while taking this this 2 square cancelled, so, you have only x2 

and this thing here. Right. So, if I write it here multiplied by x2 you are just doing this matrix 

multiplication here and then you multiply this. So, it is basically minus delta x2 square. Now, 

you can see that these guys are again cancelling each other. 

 

 

It is F x1 x2 and minus of F x1 x2 F x1 times x2 and minus of F x1 F of x1 times of x2. So, what 

you have is minus delta x2 square, right. So that is a negative quantity, so that actually proves 

that the system is stable and that is about it. You can You have actually been able to prove 

using this Lyapunov function that well. I have taken this candidate Lyapunov function in a 

clever manner. So that I can show that ah the derivative, the time derivative of this function is 

negative. 
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But also, ah let us recall Ah there were some other conditions ah does this choice satisfy the 

other conditions. So, the other conditions you had was well ah V(0) is 0. Right. 
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And otherwise everywhere the function is positive. So, if you see that the function is an integral 

plus a positive term, so, as long as x is non 0, this is going to be positive and if you have x1 

equal to 0 um I mean, if you have the If you have the or x equal to 0 that means you are at 

origin, with x1 equal to 0 and x2 equal to 0. So, this is 0 and this integral is ah I mean. Its, So at 

a point right so that 0. right ah So, you have V at x at the origin to be 0 and everywhere else 

Ah V is positive. 

 

And we have shown that well ah the I mean V will be decreasing, ah everywhere In the I mean, 

apart from the origin. Right So, we can say that the system is stable. 
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But which kind of stability let us understand we have we have actually shown this right. 

derivative of x is less equals 0 because ah for all points because as long the moment x becomes 

0, I mean the derivative is actually equal to 0. Ok. So, we are not able to say that for everywhere 

I mean ah so, what we have is, ah If I take the derivative, ah at the origin, ah yeah let us let us 

analyze that part. 

 

 

So, for this particular system ah that we talked about if we take the derivative ah at the location. 

So, if you if you remember ah the derivative was minus delta x2 square. Right. Ah So, for that 

if I take it that origin, it is 0. Right. And the condition here is that the derivative is less than or 

equal to 0 everywhere. So that is why we said it is stable but this was about the standard BIBO 

(16:26) stability that I can always bound the output region that or given that output region. 

 

 

I can always bound the input region and say that if I start from this input region, the output will 

be bounded. What about the asymptotic stability? So, if you remember for asymptotic stability, 

our condition was stricter. Our condition was that well for every point other than the origin. 

Well, at origin ah this is happening but what about all the other points? Is it that for all the other 

points I can show, the derivative is strictly negative. 

 

 



As you can see here ah I may not be able to show right because this derivative is minus x2 

square. So, ah you see you take any point V for any positive value of x1 but x2 equal to 0. This 

derivative is 0 right so that means it is satisfying this condition. And it is not satisfying this 

condition because I I have so many points, basically anywhere I go ah in this plane. This is V, 

this is x1, this is x2 I I take any point where, ah I mean which is on x1. right Ah 

 

 

There also, this derivative is 0, so, there are points outside the origin. Where also this is is equal 

to 0. It is not less than 0. Right So that is why we cannot show that it is asymptotically stable 

using this Lyapunov direct method. Ah. But there are methods like invariance principles, ah 

through which we can actually prove that but not by this method. Fine. 
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So, fine with this let us now go forward, ah to ah the next conclusion we can draw OK, ah 

which is the sorry this should be what we call as the indirect method. So, what this theorem 

says is a bit different from the previous one. So, let us see we we are saying that we will let x 

be ah an equilibrium point for this autonomous system. And we have this function V which 

exists and it is continuously differentiable. 

 

 

And we have this condition that well it is 0 at the origin and it is positive everywhere. And it 

is strictly negative for all points ah which are not the origin. And V, I mean with x approaching 

infinity V will also approach infinity. So, under all these conditions, what we can say is that 



the origin is GAS. That means the origin is Globally Asymptotically Stable. Right. So, let us, 

let us understand what this really means? Ah Sorry. Ah 

 

 

This is actually my direct methods theorem only ah but we are actually trying to say that well 

when this origin is actually globally asymptotically stable. So, what we are saying is that, well 

as long as these conditions are satisfied ah the origin is globally asymptomatically is stable. 

Now, let us recall what was global asymptotic stability? It meant that well ah you need not 

concern yourself to figuring out some region around your origin. 

 

 

Some region with some well-defined radius delta or something. As long as your system starts 

anywhere inside it is domain of definition, I am giving you a guarantee that the system will 

eventually ah eventually approach the origin and in the limiting condition it will kind of reach 

the origin. Ah. So that, So that is what we mean by this globally asymptotic stability. Right 
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And so, just just for ah a bit recap ah if you want to see our, we already gave you this definition. 

So, this was our GAS definition that for any point where you start, you will approach the origin 

eventually. 
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So that was GAS and as part of Lyapunov in indirect method, ah Lyapunov direct method, we 

initially gave the conditions under which it is locally stable. It is asymptotically stable. Now, 

so, just note that note the conditions required this is generic and then you had this condition 

that V dot should be negative or equal to 0 and it will be strictly negative. Then it is asymptotic. 
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And we are now going for a stricter condition that is globally asymptotically stable. What we 

are saying is additionally this. We are saying that well ah if your you you have the usual 

conditions it is 0 at 0. It is always positive elsewhere and it is strictly negative everywhere, 

apart from the origin. And with x increasing if V is also approaching infinity then we can say 

that well ah the the origin is the origin is globally asymptotically stable. 

 

 



That means I can start from anywhere and I will reach the origin. Now, let us let us understand 

why this should happen? I mean it is easy to easy to argue because if we have this all these 

properties kind of holding together. Ah, then ah what what is the situation that? As I go far 

away from the origin ah my value of Lyapunov function is increasing Right, is approaching 

infinity. And since ah my ah my my time derivative of the Lyapunov function is negative. 

 

 

That means well with time I must be approaching the origin only which is my position where 

I will settle down to V(0) equal to 0. Right. So that is why I can start from anywhere ah I need 

not have an outer bound or something to compute. I took out to compute the inner bound from 

where I start etcetera. right ah. So, I need not always be concerned about local stability but as 

long as I have the situation that the moment I go out go away from the origin, my x increases 

ah V(x) will be ah V(x) will be approaching infinity. 

 

 

As long as I have that along with all these conditions ah I can say that well ah I can start from 

anywhere inside the domain of definition of the system. And I will have ah global asymptotic 

stability. That means the system is stable, starting from anywhere in the domain of the system. 

Ok. So, ah we can we can have some examples on when this happens for, for What kind of 

systems we can show that? Ah 

 

 

The system is GAS using this stability theorem. And we will we will do some examples on this 

in the tutorial., fine. 

(Refer Slide Time: 23:20) 



 

We will have one example here also. So, let us consider this system, so, it is a derived is defined 

using these two equations. And h is given as a locally Lipschitz continuous function and h is 0 

at 0. Ok. And also ah we have some other conditions like ah x1h(x1) is greater than 0 for all 

other points apart from the origin, etcetera. Now, from this system Ah again you see we have 

some specific choice of Lyapunov function. 

 

 

And we can show that well this function is positive, definite. And it is radially unbounded ah 

that means ah with x increasing towards approaching infinity V will also be. right And. So, ah 

V is positive definite that means for all other points apart from the origin. ah V(x) is positive, 

strictly positive. And we can show that well the derivative of V if you compute from this 

equation, I think it would be easy to compute. 

 

 

Because ah you have to again use the standard template you take the derivative with respect to 

x and then that derivative we will multiply with x dot. And eventually here you can get this 

kind of a form. Now, if you get this kind of a form, ah you see Ah you you have this ah I mean 

let us see that what what are the things I can comment? So, we can say that well ah as long as 

I have this k to be inside 0 and 0 and 1 I mean it is less than 1. right ah 

 

 

So, this is a negative term ok, and since the definition here assumes this thing that x1 ah h(x1) 

is greater than 0 and k is also positive. So, this is also a negative term right because overall, 



with this minus sign this is a negative term. So, overall, this derivative is a negative term. right 

So, what will happen? This with time the change of V will be I mean towards 0. right Therefore, 

ah this system is globally asymptotically, stable. OK. 

 

 

And but if you you see that for other choices of k in this Lyapunov function, suppose k is larger 

than 1. right Then I cannot say anything if k is other than 1 then these negative so, overall, this 

positive. So, I cannot make such comments. right But ah in general, as long as I choose, this 

parameter k to be less than 1 but also positive. And I have this function h defined ah like this 

that for all a x1 non-zero ah x times ah h(x) is positive. 

 

 

If as long as I have this definition, ah we can see that ah this is a function ah which will keep 

on increasing with x. That means it will satisfy this condition of Lyapunov theorem 2. Right. 

So because if you see if x increases right ah this is the first term in the function is quadratic in 

x. Right So, it will always be positive and it will increase in square with x. right. It will increase 

in square with x right and here in this function. right ah, you are increasing the integral limit. 

Ok 

 

 

So, ah you will be integrating h and you will be increasing the value of the limit over which 

you integrate it. right So, overall, this V(x) function with x increasing Ah it will increase only. 

So that is why it will satisfy the radial unbound readiness nature. And overall, with all these 

conditions satisfied, you will meet Ah this requirement of the of the theorem which says that 

well. ah If these things happen together then the system is GAS, fine. 
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Now, ah the next ah statement that we have is Lyapunov class of indirect methods which 

primarily mean that well we will now try to see that well, how this Lyapunov style argument 

will go for linear systems? How this Lyapunov style of argument will go for non-linearized 

versions of non-linear systems, etcetera? And accordingly, there will be this Lyapunov indirect 

methods. So, fine, we will take this topic, ah in the next lecture again and further time. 

Goodbye. 

 


