
Foundation of Cyber Physical Systems

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

 Lecture - 35

Reachability Analysis (Continued)

(Refer Slide Time: 00:31)

Hello and welcome back to this lecture series on foundations of cyber physical systems. So, in the

previous lecture we have been talking about methods for reachability verification. We came up

with a very basic idea and we were trying to say that well how reach sets can be made. And also,

we are not going into the actual optimized algorithms that are used but we are trying to give you

an idea that how reach set constructions can be done well there are various optimized algorithms

for this.

(Refer Slide Time: 00:53)

So, what we will do is for the sake of creating some interest in this topic of how to study

reachability analysis and stuff we will take up few examples and we will show you the output of

certain tools which are very popular in this domain which actually do this kind of reach set

computation internally and try to figure out well if the reach set is going outside some safe zone

and stuff like that.

So, let us take a very small example we have a generic, so we have a harmonic oscillator here as

you can see that you are going to give a control force u from outside and you are if you give the

force here it will overshoot to this side if you then you change the direction of the force you will

overshoot to this side and stuff like that. And given the length of this rod as l and the mass of this

ball as m this angular velocity 𝜔 will be following this kind of equation.

𝜔̇ = (−
𝑔

𝑙
) 𝜃 + 𝑢, 𝜃̇ = 𝜔

Where this angle is nothing but I mean the rate the 𝜃̇ will of course be 𝜔 and we have theta that is

the angular displacement of the pendulum and 𝜔 as the angular velocity and these are the two state

variables in this system and u is our control input like we said.

(Refer Slide Time: 02:14)

So, for this system if we try to create a reach set, we use a tool called, so this tool you can just

check it out over internet. So, this is one of the latest tools that have come up. I mean this is a very

simple one to use that is why I am talking about this. All you need to do is you have to write a

simple python script where you express the dynamics of the system and some desired property the

tool will just run and it will create this kind of reach set for you.

And there are several other tools in this domain which does reach set construction formal

verification and all this stuff this is just one very simple to use tool you can just download if you

have some python interpreter in your computer you can just download and install and run this thing

and get a check. So, you can check that well what is the final reach set here. So, this is a plot we

are doing so in this direction we are plotting the angle.

And in this direction, we are plotting the angular velocity and this shows that with time, starting

with time how the reach set has changed and as you can see so I mean initially if you have a very

small subset from that you can start. And these are the possible combinations of 𝜃 and 𝜔 through

which your harmonic oscillator can move about and it will not ever go outside these reach sets.

So, that is an example we thought would be interesting.

(Refer Slide Time: 04:27)

But is it all? No. I mean you can actually use this tool for more important kind of applications also.

For example, this is an automotive drivetrain model. So, if you see you have this kind of a gear

mechanism which is kind of connecting through these two levers and it is going to engage each of

these gears here so, these are these numbered indices are referring to the numbering of the

additional rotating masses.

And you have a moment of inertia here denoted by J for this for this shaft here and there is you

have viscous friction constants given by b and because and those are used for creating the

mechanical equations for the system which we are not doing.

(Refer Slide Time: 05:10)

And there is a reference paper which we will provide you this one. So, I mean if you look at this

paper it actually contains the detailed analogue equations and the auto and the controller model for

this kind of a system. Let us not get into that all we are trying to tell you is that if you see that

when this thing rotates this shaft will either connect this way or if you suddenly change direction,

it will connect the opposite way.

So, that is how the clutch mechanism and the differential mechanism will work here and we are

trying to show all these different components of the powertrain gears the differential here and the

clutch among others. And so, you have a very this is a significantly large system and there are a

lot of continuous states here. So, what can happen is when these rotating components are going to

switch direction for a short time they will temporarily disconnect.

As you can understand that this shaft, once it was driving in this direction suddenly it changes to

the other direction it will move from here and up to here to engage this opposite direction, I mean

this stick here in the opposite direction. So, in between what we have here is called the dead zone

and suppose there is an extreme manoeuvre that can assume maximum negative acceleration that

will last for 0.2 second. And it is followed by a maximum positive acceleration that is going to last

for 1.8 second. Let us say you want to check if that is something safe or not.

(Refer Slide Time: 06:40)

So, you can actually do a reach that analysis using this tool where you are trying to create the reach

set for the angular position of let us say the motor. This motor the angular position and one of the

rotating mass whichever is engaged here through this gearing mechanism whichever is engaged.

For it what is the angular for I mean what is the angular position. So, let us say you are plotting

the angular position of these two things that is the original motor and one of the shafts.

Let us say the second shaft here and they are denoted by x0 and x2 here let us say. So, initially it

was all zero. So the motor was at zero and for the second rotating and so the second rotating mass

is not rotating but the motor can have a small variance here as you can see and with time, we see

that these two quantities can move like this. They are values they are possible set of values can

move like this following this kind of a frontier.

And if we simulate further than with time once it has started moving like this then it can switch

direction so, this is where the drivetrain which kind of switch the direction and they both are now

going to go in the same direction and if we just want to simulate further this flow pipe you can

keep on building and you can create this nice graph using this tool for which you can have this

category report from this conference paper.

So, what I am trying to say is even in very large significant industry specifically the automotive

industry this kind of formal methods can actually be applicable. If you try to check for this kind of

an engine shaft connecting through this clutch and differential to the different gears. If we try to

see that well under this reverse movement scenario what are the angle values and what are the

maximum differences between these two angle values and what is the range of those values is it

safe and all those things.

We can actually create these reach sets and we can just simply verify. So, that is one important

application I just trying to wanted to touch on may not but note that the reach set construction

algorithms which were used by these tools are kind of state of the art and we are not touching

them. What we did initially was in our course we just try to give you an idea that how reach sets

can be formalized.

(Refer Slide Time: 09:22)

And how reach sets can be constructed through this kind of techniques like the post computation

and etcetera. But of course, for using them practically there are a lot of optimized algorithms which

will be employed for this purpose. So, fine from this we will just move on to another model of

computation which is timed automata which is kind of simpler than hybrid automata but it also has

got its usage.

(Refer Slide Time: 09:46)

So, formally what we what timed automaton. It is just finite automata and enriched with clocks.

So, is very simple you consider you already know hybrid automaton and in hybrid automata we

had any kind of continuous variables. Now let us just say that well whenever you are having a

hybrid automaton with a continuous variable the continuous variable is only having one restriction

that it cannot have any vector field of its choice.

And if the x is a continuous variable the differential of x is always 1. If I put on this restriction

what we have is a timed automaton. Basically, what we are doing is all the variables can only be

clocks and they can be reset like a stopwatch and they can start counting something like that. So,

if we do like that then we have this kind of a simple timed automaton.

(Refer Slide Time: 10:38)

So, let us say you have this timed automaton as an example and you already know that transitions

are equipped with guard conditions and resets happen on clocks etcetera.

(Refer Slide Time: 10:50)

So, just for the sake of definition a timed automaton will have a tuple which is similar to hybrid

automaton. You will have the usual set of locations the set of initial locations, the set of accepting

locations, you will have a finite alphabet, a set of clocks and you will have this. So, this is the set

of clocks is whatever originally was your set of continuous variables and you will have your set of

edges now when you have an edge basically it is a transition from one location to another location.

And when taking this transition your clock variables I mean the continuous variables they should

satisfy some guard condition. And there should be an input event part of the alphabet based on

which the transition will happen. And why this transmission happens? So, the set of clocks a subset

of them may or may not be reset. So, that is why you have two to three power X the power set of

all possible subsets of X.

And what are guard conditions they are just linear relations like we discussed earlier constants.

Linear relations among clock variables with using clock variables and some constant values so,

the clock variables and some constant values they will be operated by some of this one of these

linear arithmetic operators and there can be multiple construct constants which can be in

conjunction.

(Refer Slide Time: 12:13)

So, that is how we define guard condition and next we have valuation of I mean let us say you

have a valuation I mean it is also something we have already discussed that earlier valuations

assigned values to any variable and now it will just assign a value to a clock variable. And with

such valuations you can have delay transitions like with time just relapsing your clock variables

will just increase by some time 𝜏.

And if you have a discrete transition from some state like this. So, let us say your location is l you

are jumping on to l’ there is a guard that you satisfy that means the valuation right now that you

have in l just immediately before the transition will satisfy this guard condition. And when the

guard condition has, I mean satisfied then you are also supposed to do the required resetting. So,

after doing the resetting the valuation will get modified.

So, you as per this formula v’(x) will be zero if they are reset and they will be v(x) that means they

will be same because the transition is instantaneous. And in that way your modified state would

be l’ v’.

(Refer Slide Time: 13:20)

So, just similar to hybrid you will also have a definition of a run of a timed automaton. A run is

nothing but well you are in a state l0, v0 from there you can have a time elapsing of time t1 𝜏1. So,

that is a delay transition. So all that will happen is if you are in still in l0. Your valuation will

increase by 𝜏1 and then due to some input event belonging to this set sigma or there is a finite

alphabet of the automaton.

You can have a transition to some l1 now whenever such transitions happens this rules have to be

satisfied. And then again you can have a delay transition so that v1 gets updated by 𝜏2. Then again

you can have an action transition or an instantaneous discrete transition. So, overall, what you have

is when you when that automaton here you can I mean you can just show like this I mean in

different books you can see that well there are different ways to show.

For example, here what we are showing is with respect to the initial location we are spending here

𝜏1 amount of time and then we are taking a transition based on the arrival of the input event a1.

And then again, we are spending some time here the amount of time we spend is 𝜏2 and then based

on the input action into we are doing a transition. You can show like this. Or the other standard

that maybe you will see is that well there is a location and valuation.

Then some input a happens at some global time t1 and then you go some other location valuation.

From there then again there is some input a and which is happening at some global time t2 and

based on that you it happening. Here we are just showing the delays the time spend in each case

but this is also perfectly fine. You just show the time at which this input event happened then,

again you go to this some updated look updated state again you show the time at which some other

input event let us say b happened.

So, that is also quite fine I mean there I mean many books follow this thing also. So, overall, this

different time sequences I mean you can look at this runs as a collection of this time spent in each

of these states or you can also look at it as those global time instance when these transitions were

taken. Let us say this happened that 𝜏1, this happened that this happened at t1, this happened at t2.

So, essentially t2 is nothing but 𝜏1 + 𝜏2. If we are considering this representation and t2 here in this

representation is nothing but 𝜏1 + 𝜏2. Next if we have a t3 it is nothing but 𝜏1 + 𝜏2 + 𝜏3. So, either

you write those absolute time sequence that is one idea of representing the time sequence or you

just write the sequence of intervals spent in each of these discrete locations. So, that is also a way

to represent the time sequence both are fine.

Now when you have such time sequences and with them these input events together like written

like a string then what you have is what we call as a timed word. So, just like a finite automaton

will have an input string a time to automaton we will have a timed what basically it will be a string

where each element of the alphabet will also be paired up with a timestamp that this is when it

happens.

Now the timestamp can be based on this semantics of the global timestamp or the timestamp can

be based on the intervals, the amount of time stamp in the previous location something like that.

So, then we talk about accepted timed word. So, let us say you have a timed word and based on

that timed word you simulate your timed automaton and your timed automaton will have a run

something like this. And at the end of the run if you are reaching an accept state then we will say

that well this is an accepted run or this is this timed word is a member of the language of the

automaton.

(Refer Slide Time: 17:32)

So, this is a simple example like these are word which is an accepted timed word and with respect

to this word if you just simulating this automaton and if it is going to eventually reach. So, we

have some things missing in this picture sorry let me just correct it up. It will be the reset sets.

Here the results set are blank. So, if you can see here, you have one example. So, if you are at l 0

you can either take this self-loop based on an input event a.

And you have two clock variables x and y so you can take this self-loop provided the time of y is

1 or otherwise if b comes as an input event then whatever is the time of y and what whatever I

mean as long as x is positive you can just take this self-loop. Now from l0 based on a, you can also

move on to l1 and while you do that you will reset x and when x is again elapsed to one and if b

comes then you can move on to l2.

So, let us say l 0, 0, 0 so when this is your initial state you are in the initial location and all the

clocks are just at 0. And then there is a b1 input event coming after an elapsing of time that is 0.1

after an elapsing of time that is 0.1 an input event has come b so; what you do is you take this

transition and while you take this transition. So, x will climb up to 0.1 and y will be reset as per

this so y remains 0.

And then after this transition let us say you spend another 0.2 amount of time here and then a b

event comes again. So, with that b event what will happen is well x will again climb up from 0.1

to 0.3, addition of 0.2. But again, y is reset so you are still here. And now suppose a event comes

when after an elapsing of time = 1. So, as you can see that with a coming and with time = 1 being

spent in this location.

So, your x at this moment. So at this moment when this is being happening your x is what your x

is 1.3 and y is 1.0. So, what happens is which guard do you satisfy? Well the event is a so you have

to take this transition or this transition. But with y = 1 you are satisfying this guard also and here

there is no guard to satisfy here you do not have any guard to satisfy. So, let us say I take this

transition this is a non-deterministic choice I could have taken any word, I take this transition.

So, I satisfy this guard nothing is being reset. So, I am here again with 1.3 and 1 as clock valuations

of x and y. Now let us say after spending another 0.2 second let us say I have an event b that comes.

So, again I am in l0, I have taken this self-loop now again you will have a y being reset and x has

climbed up to 1.5. Now let us say an a again comes. Now you see I do not satisfy this guard but

here there is no guard.

So, I can always take this transition so I choose to take this one. So now I am in l 1 and both might

see x y was reset here and then immediately I mean when I took this transition y was reset and

then you see this is zero that means I did not spend any time in this transition in this state I

immediately had another, a came. So, b came and immediately after that a came that is what this

is been modelled by this zero.

So, with b I climbed up here I got y being reset and then with a I immediately moved off to l1 and

I got x being reset. So, both x and y are zero. So as you can see that these are instantaneous

transitions and here there you do not have any delay. But there is a sequence that is why you came

from here to here and then you came from here to here so, you have two consecutive instantaneous

transitions, so l0 to l0 and then again from l0 to l1.

And but in that sequence although they are instantaneous, they are in that sequence. So, you can

understand these things these issues of having instantaneous but sequences and etcetera they will

again lead to Zeno conditions like just we had in hybrid automata but we have already discussed

that there. We are not discussing hybrid or I mean Zeno time divergence etcetera in the context of

timed automata you are interested.

If you are interested you can just consult the relevant material that we will site here. so, from here

if another event comes after another time elapsing of one unit of time, then you see that I go to l2

but when I go to l2 then well, I satisfy this guard because x = 1 so and I will end up here so, this is

like an accepting run. So, that is how our timed automaton typically will simulate.

(Refer Slide Time: 22:59)

Now just like hybrid you can have location invariance like for example if you are here and you are

waiting you are spending 3.2 amount of time the invariant will get dissatisfied. So, then you are

kind of going to be pushed out of the state. If you are here up to after you elapsing of time for 1.1

unit and then find your variables the clock variables will get updated.

(Refer Slide Time: 23:25)

So, here we have a small example of a jobshop scheduling. We will show you some few examples

of timed automata based modelling. So, for example here we have a jobshop scheduling problem

and how that is being modelled here so, we are trying to show a factory where there are a set of

people who are hammering nails and we are trying to have automata-based specification of when

exactly they work and how much they work stuff like that.

So, they can be in any of these two states they can either be resting or they can be working so this

is an automatic which kind of nicely captures different constraints on that. So, let us say I do not

allow them to rest for more than 10 minutes so that is how I modelling. But they must rest at least

for five minutes so that would be a guard here then with the start even they will start working both

the clocks x and y will be reset.

During work they have given our specification of how much they should work. They must hammer

one nail every 4 minute. So, that is specified by y less than 4 and whenever they hammer one nail

there is a hit event. But at the same time, they should not be hammering a nail too fast because that

can kind of compromise your work quality. So, you should not hit more than one nail in every

minute.

So, whenever you are hitting the nail it y this value that has been reset after the previous nail was

hit, this must have time elapsed at least by one. So, you do not hammer more than one inside a

minute that will be classified here and at the same time you must have more one inside every 4

minute that is kind of captured in this location environment. Overall, the person cannot work

continuously for more than 60 units of time in minutes let us say then you can have a invariant like

this here y less than equal to 60.

So, cannot work more than 60 like that and then when this done event comes, you have to transit

to rest at the same time while I cannot work more than 60, I must work at least for minimum 40

units of time so if I want to specify that. I can have a guard like this here so, you see that lot of

timing specifications that is the point here lot of timing specifications of real time systems can be

captured by using a timed automaton. As long as only time is the continuous variable timed

automaton is a fine modelling formalism.

(Refer Slide Time: 25:57)

So, let us pick up some other examples here. For example let us say you have a rail gate crossing.

So, let us say in this crossing whenever there is a gate and whenever the train is coming there is a

sensor which is sensing whether this approaching or not. And similarly, you can have a sensor to

sense whether you have the train have exited or not. So, now for the train gate and the controller

if I am trying to model their behaviours using this kind of timed automaton-based mechanisms.

So, let us say I am creating a train automaton. So, let us say sorry it took some time you have these

three automata modelling the train the gate and the controller. So, let us say initially you are sitting

here, so the train is far away. So, the train is far away you are in this state and the gate is open. So,

let us say you are here and the controller right now is I mean is in this state here. Now so that is

like your state when the train is somewhere here and let us say now this sensor goes ON with

approach that means the train is nearby.

So, once the sensor is saying your nearby all these states are now going to change and let us see

how. So, when this approach event is true, so this due to this approach event happening so that is

like an input event coming from the sensor the strain automaton let us say it is switching to near

and along with that with this approach is also an input event. So, this is this question marks model

input event and if some somebody is outputting an event its true an exclamation mark followed by

that event.

That is a standard which is followed in automata theory in general. So, this controller also then

change its state here. Now you can see that when I am the train has changed to this state it has set

up a counter. So, x is being reset and you can only be in this near state up to this x less than equal

to 5 and the controller can also be only in this state up to z this its own local clock less than equal

to 3.

So, it is something like you have a timeline an approach event has happened and you are

monitoring this said less than equal to 3 and also the train must you know that within x less than

equal to 5 the train will definitely change from its near state and really enter the gate. It will really

enter here and that is known to the designer of the system here. So, next what will happen is the

train will come in and in between the controller needs to give suitable commands.

So, that the gate is being lowered. So before the train moves from this thing actually the train

moves from this location to this enter state the controller inside a smaller amount of time so as you

can see that the time given for the trend to move from here to here is 5. Inside after 5 it must be

here so that is the timing model. So, if you see what we are saying is even before that the controller

within 3 time units it must go to a state where it will signal the gate to lower down it will signal

the gate to lower down.

And then it will be in that state and when this lower signal comes from the controller inside 1 time

unit as you can see because of this clock constant model. Inside 1 time unit the gate must move

from this up state to the down state. So, you see that is a sequence of events to be modelled. Inside

5 time units from being near the train should be here inside 5 time units. So, even before that the

gate which was raised must go down.

So, the way it is modelled is inside these five two things will happen inside 3 time units the

controller must come to a state where it is emanating this signal and this signal is an input event

for the gate subsystem here so, the gate system must react to this signal and it should have its

internal clock reset so that and that clock condition here will monitor that the gate must go down

inside 1 time unit.

So, what this will in effect ensure is that before the train is in the gate is actually down. So, this is

now using this automata model you can create the specification of a time of the timings of a real

name system and just like we did reachability analysis that existing similar techniques there exists

well known logic based or algorithms through which you can actually use several automated

decision procedures to check well if you have a real time system for which you have a timed

automaton model whether that system works correctly whether the system is safe whether that

system satisfies some timing specification and all these things. So, that is one primary reason why

people use this kind of models. Model usage also another important region model there are tools

which support these models and they can do code generation for the source models using several

kind of modern embedded system design tools more for model based design primarily.

So, let us see that how these things will move now what will happen is well, inside this time the

controller will move from here to likewise saying it will move to this and once it has shifted to this

the gate will move from up to this and then inside this timeline as I was saying it must go to the

down state. So, here inside this 3 time you will have this lower signal coming and then inside some

y equal to less than 1 from starting from here inside this interval you will have the down event

really occurring. So, and then at some time the train will actually enter and before that this is the

gate is actually down here. So, eventually what will happen is the train will come here and by that

time the controller will ensure I mean this gets downward movement as has created this down

event to happen before the entire event. And then if you see that well the train has entered and

eventually the train is supposed to leave.

So, when this train is leaving what will happen is it will give this exit signal and once this exit

signal is given it is like an input for the controller. So, with the exit signal the controller will move

to this state and as you can see that here again it is reset a clock and inside 1 unit of time of getting

the exit signal the controller will output this raise signal and this raise signal is basically an input

for the gate’s physical subsystem.

And with that after getting this raise signal inside write these two units of time you have a resetting

and you have a guard the gate will go to this up state. So, once it has exited it gives a raise signal

and based on the exit event and inside after sometime within these two units of time of getting the

raise signal the gate will go to an up state.

(Refer Slide Time: 38:45)

So, that is how it works here. So, let us check another simple example suppose you are given

another real time system specification for let us say an elevator system. So, you have an

autonomous elevator which operates between two floors and it is supposed to have the following

behaviour. The elevator can stop either at the ground floor or at the first floor. Now when the

elevator arrives at a certain floor its door will automatically open.

And in takes at least 2 seconds from its arrival before the door opens but the door must definitely

open within five seconds. Now whenever the elevator's door is open passengers can enter and they

enter one by one and we assume that elevator has a sufficient capacity to accommodate any number

of passengers who are waiting for it I mean of course there is not an ideal scenario here.

And whenever the door is open passengers can enter and they can enter one by one just like that.

Sorry we have a repetition here so you can just ignore this thing. And then the important timing

behaviour you have here again that the door can close only 4 seconds after the last passenger is

entered. So, once the last passenger is entered the door can close again and after the door closes

the elevator will wait at least 2 seconds and then it will just travel up or down to the other floor.

(Refer Slide Time: 40:20)

So, let us say you just want to create a timed automaton and you are using these actions up and

down to model the movement of the elevator and open and close to describe the door operations

and the action enter which will mean that the passenger is entering the elevator. So, as you can see

its very easy actually. What you can do is you can have a state so, let us say here passengers are

entering, so there is an entered event.

And let us say this is representing floor 1 and then eventually there will be enough action you will

move. So, if you check our constraints like earlier. So the door can close only four seconds after

the last passenger has entered. So, after the passenger has entered the door will close so you can

put a constraint like x greater than equal to 4 and this is the guard which must be satisfied with the

close event.

And then while this happens you can take a reset of this clock. So, if you look at this the elevator

arrives to the floor and the door opens and exactly to, I mean and that would happen inside 2

seconds of its arrival. So, that also we have to model and it should happen between these 2 and 5

seconds should at least take 2 seconds to open but it should open within 5 seconds. So, these are

the two kind of constraints we have.

So, I think with all these constraints we can just model them like this. Once again so we have this

as a floor 1 state and this is the floor 2 state and these are the in between states we have drawn. So,

passengers entering is considered here as an event. It can stop either of these floors. So, when an

elevator comes this is where we say that well it has arrived. Now once it has arrived it is going to

take this the I mean the door can close only 4 seconds after the last passenger has entered.

So, that is modelled here and after the door closes the elevator waits at least 2 second so it will just

wait at least two second. So, only after x is reset here and there in this transition you have x greater

than equal to 2 and after that the up action should happen and it will travel upwards. Now it will

take at least 2 seconds from the arrival before the door opens but the door must definitely open

within 5 seconds.

So, that is modelled here and after that the door will open in the second floor. Now in the second

floor like you see that the door can close 4 seconds again here after the last passenger entered. So,

only after being in this floor and all the inter events with each enter event I am just looping here

and whenever one passenger is entering this clock is being reset. After the last passenger is entered

there is no one coming in so there is no resetting, so clock will go up and once it expires 4 then the

door will close and I come here and then from floor 2 I will be starting to go down and once I have

gone down, I will again reset and then we will reset and I will move to opening the door inside an

interval from 2 to a max of 5. So, that is why 5 is the invariant and 2 is the guard condition. And

again, the entering logic will be just like for floor 2 in floor 1. And again all the passengers get in

then x greater than equal to floor then I just start going up. And that is how it works so these are

very simple model. But just to insight your mind, there are several interesting problems around

elevators that can actually be done.

(Refer Slide Time: 46:48)

For example, you can have multiple let us consider a situation you have a say large multi storeyed

building. Large multi storeyed building of many floors and you have two elevators running. So,

they can both go up and they can both go down. Let us say you are trying to build a control

algorithm which is going to control the up or down signals which is going to give this up and down

signals for the elevators.

And as feedback it gets to know what is the current floor information of the, of the elevator,

feedback is current floor information of each elevator. And then number of passenger requests for

each elevator and current occupancy, passenger requests that are pending, for each elevator current

occupancy etcetera. So, I can design a central controller which will work in real time based on

these feedbacks and it will decide which elevator goes up and which elevator goes down from

which floor.

So, designing such controllers is a very important real time programming problem and just to pick

your minds you can think about it you can design a small simulation C program or let us say an

Arduino based controller of such a toy system stuff like that. So, fine with this we will end this

lecture, thank you for your attention.

