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Hi welcome back to our lectures on foundations of cyber physical system. So, in our previous 

lecture we defined what is the reachability problem of linear hybrid automaton. So, if you 

remember this is what we define that you are given that automaton, you are given a set of linear 

regions where the question is whether this region is at all reachable, whether I can start any of the 

valid initial states of the automaton and I can have a valid run of that automaton which would reach 

a point inside this region. 
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So, let us see how this can be done. So, what we do is we compute the sets that are reachable 

starting from some initial location. Now for that we will define some operations. So, this is what 

we call essentially is a symbolic execution of an automaton or any formal system in general. So, 

first thing we will talk about is how to compute a continuous successor. So, a continuous successor 

that means that I am in a state and the only thing that is happening is time elapsing. 

 

 

So, in my state let us say I have l the location and a valuation v, this is how we talked about a step. 

Now you see I am not talking about valuation v but rather I am writing something like p which is 

like a linear predicate. Now what does that mean? So, let us take an example. So suppose I am 

talking about a two dimensional systems there are two variables x1 and x2. So, when I talk about 

state here is basically a point that means I am in a location l let us say.  

 

 

And a valuation v is giving me a value of x1 and value of x2 is a point. Now let us say I start writing 

x1 - x2 less than equal to something and similarly another constant less than equal to something 

like that. So, using such a combination of linear inequalities I will get convex linear predicate like 



one which we show here that is P1. So, that means now we are not really talking about a point but 

maybe we are talking about a region like this.  

 

 

So, the question is suppose I am in any of this states which are inside this region. So, there is an 

infinite set of such states and they are succinctly captured by this linear predicate P. So, that is a 

way that we capture it symbolically and we are talking about well what is the continuous successor 

of this collection of states. So, this is the region as you can see and we are talking about what 

happens to this region with elapsing of time.  

 

 

So, with elapsing of time this region's shape would change. Because I mean for the simple region 

saying that these variables x1 x2 their values are going to change based on their flow dynamics at 

l. So, based on these two constants these variables values are going to change and accordingly P 

would get modified to some prime. So, this region's shape would change. So, the question is how 

do I characterize this symbolical?  

 

 

So, this is it. P is the linear predicate. It is defined over this exercise and xi’s are evolving following 

some relation like this given for a given l. So, P’ would be defined by a predicate which I can 

construct given P so I am given P that means I know what is the structure of P. So, whatever is the 

definition of P in that you make a substitution. That is you introduce an existential quantifier here 

which is there exist some 𝜏 greater than 0. Essentially you are talking about the elapsed time.  

 

 



So, 𝜏 is basically the amount of time elapsed starting from this from the initial states I mean at l. 

So, suppose tau amount of time has elapsed so that it mean x1 value has altered by this much k1 

times tau because k1 is the rate of change, the constant rate of change and tau is the amount of time 

for which this change has happened. So, x1's value has altered by this much, similarly some 

exchange value is altered by this much.  

 

 

So, in this condition the modified structure of the predicate would be given exactly by P but with 

this variables xi's getting substituted by xi - ki times 𝜏. And in general, when I write P’, I am not 

telling that 𝜏 equal to this it is a continuous successor, that means tau is elapsing. So, tau is 

symbolic, so for any tau I have this P and this is the predicate which is capturing the continuous 

successor construction for the initial region that I have.  

 

 

Now the next thing is just like in this way I can create a continuous successor of collection of states 

I should also be able to construct a discrete successor. That means there has been a location switch. 

So, suppose I was in that same region but now a location switch has happened. So, the transition l 

to l prime took place and the resulting region will be modified to some l prime P prime. Now what 

is P’?  

 

 

Well, P’ is that same linear predicates which define P with the modification that all the variables 

which are in this reset set of l’ they will become 0. So, this is also known as projecting the region 

over the transition. So I was in a region I was in an n dimensional region like this. And I have just 

projected it that means I reset some of the variables here. So, essentially this n dimensional thing 

you are projecting to a subspace where some of the variables have been reset to 0.  



 

 

That means you have projected it to that plane. You have projected this n dimensional setting to a 

plane where those variables are 0. But one thing we are sure that even after doing these operations 

that the region that will be constructed by these operations, they are still linear regions because we 

did not violate linearity by any of these operations all the operations done has been linear. So, the 

resulting regions that have been constructed using these symbolic executions are also linear. 
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Now we will define another operation which is known as the post operation. Now let us understand 

what it means, we are trying to figure out. Suppose I am given a set of such linear regions not one 

but multiple such linear regions. And what I want to figure out is what will be the set of linear 

regions once I start in these regions the initial set at some location l and then I jump to another 

location l’ and I spend some time there then what is my set of linear regions? 

 

 

So, due to a jump what does it happen there and how does my set of regions change that is what I 

want to figure out. So, what we do is I am given this set of linear regions. So I figured out inside 



this set of linear regions what are the convex linear predicates. So, if you remember these are set, 

so that means it is containing multiple such regions. So, let us pick up in each of these regions. So, 

let us say it one is given by l p another is given by some l1 p1 like that.  

 

 

So, we have such linear regions. Previously whatever we defined was with respect to one region. 

A region again I will repeat a region is nothing but a collection of states and a possibly infinite 

collection of states and here we are talking about a set of such regions. So, inside each region 

inside this set you pick up each region like this. Now what we want to do is we want to figure out 

that starting from these regions what are the all-possible transitions that exist.  

 

 

So, let us say we are talking about these two regions along with the associated locations l1 and l2 

and from l1 there are switching’s possible to locations l1’ and l1” and from l2, there is a switch that 

is possible to location l2’. So, that means I will pick up each of these regions. For each of these 

regions I will consider all the outgoing transitions and I will do the following.  

 

 

So, that is why for all the regions, for each of the regions for all the outgoing transitions what am 

I doing. I will compute this which is nothing but well I can take this transition from l1 to l1’ only 

if the guard condition is satisfied. That means the moment I take the transition it is not that for all 

the points or all the states in this region, my guard will be satisfied. That means the moment I jump 

to l1’ this region will be intersected with the guard.  

 

 



And the sub region will emerge. So, what are we really doing here? We are trying to figure out 

that assuming that my system starts from this set of linear regions, what are the all possible regions 

where I will land up after one discrete step. This is what we define as the post operation. We are 

saying that suppose my initial regions l1 and l2. These are the discrete steps that are possible l1’, 

l1”, l2’.  

 

 

We are trying to figure out after this one discrete transition what is this collection of regions where 

I may reside so that is the post operation, now that is a definition here. So, pick up this one 

transition from l1 to l1’ it has this guard which is again a linear predicate. So, you will intersect 

these regions mathematical condition with the guard condition. That will give you possibly a sub 

region based on which sub part of l1 is satisfying the guard, so you get p1.  

 

 

Not only guard there would be some reset also. So after constructing p1 you have to apply the reset 

condition here to generate some p2. Not only that when I get to the target location it will have an 

invariant. So, let us understand what is going on we have picked up a region. Not all the states in 

the region are states from which I can really take the guard condition. I can really take the 

transition.  

 

 

So, the first operation gave me that sub part of the region from which the guard is enabled and I 

take the guard. Then after taking the guard my region will change further because certain variables 

have been reset. Now again even if these are done, I may not enter my I am not allowed to enter l 

prime if the invariant is not satisfied. So, that means I will go to a further sub region of this from 

which the invariant will actually be satisfied.  



 

 

So, that is how I get p2 intersection invariant of l’. Now the next thing is the continuous successor 

or the extension of p3. So that is basically this computation the continuous successor. So, that 

captures that what are the possible regions in which I can go with elapsing of time. So, that is how 

this variable will now come in there will be an existential quantifier and that will capture that how 

this region can change as a function of time elapsing.  

 

 

There is a continuous successor. Now then with continuous successor you will do intersection 

again of this. So, what does this represent? I mean let us understand what did we just do. We took 

an intersection or with invariant set but again we are taking an intersection with invariant set. We 

are trying to create a region definition which is symbolic in time. That means I started from a 

region in l1, I took the discrete switch to l1’.  

 

 

I satisfied the guard condition, I reset suitable variables, I satisfy the invariant of p2 and then I am 

trying to create a symbolic definition of the region as a function of time. That means with change 

of time till this definition of that reachable region is holding. And then it should again after this 

elapsing let us say time has elapsed up to some 𝜏. So, here the invariant was satisfied after this the 

invariant will again be satisfied.  

 

 

So, you can see that this is a symbolic definition. For some value of 𝜏1 it will be true for some 

value of 𝜏2 it will be false. So, in that way what is happening is we are adding another variable in 

your region definition with respect to time here. So, in that so that is what is happening, I hope it 



is understood. So, in this way we added the continuous successor operation here you took the 

invariant intersection earlier.  

 

 

And again, after the continuous successor operation to filter out those states which will be part of 

the region at any time 𝜏. And then what we do is you get this final set p and store it in your 

collection of final sets. So, this is initially empty, this is what you want to compute, output set of 

initial regions, that is what you want to compute initially it is empty. So, what we say is we are 

saying that suppose I started from l1 with region p.  

 

 

If I took the transition to l1’, I would land up in a region or a collection of states that is l1 l’ p5 and 

that is of now a part of this set of output linear regions. Now you take again l1 and do the same 

computation for another possible discrete switch, you take l2 do the possible computation for the 

corresponding discrete switch and all those regions you take union here. So, this tells you that if I 

had a set of initial linear regions with one discrete switch what will be my set of output linear 

regions. So, this is the post operation.  
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So, how do I use this post operation? Well, it is very useful. So let us see. So, symbolically this is 

my set of initial regions that for every location l what my set of initial regions is that I take those 

which are I mean I have a set of possible initial states which is the Init l. And they must also be. 

So, basically what is Init l if you remember previous lectures, it just tells me what are the set of 

allowed valuations.  

 

 

What are my set of allowed valuations and states for the start of the system and along with that for 

those locations there are invariant conditions which also have to be satisfied. So, in that way Init l 

intersection in well that gives me the set of possible starting the set of possible initial states of the 

system. So, overall, I have a set of initial states. So, as an example let us say I have an hybrid 

automata which can either start here or it can start here and here it has some Init l1, here it has 

some you can refer to the two-tank automaton example in the previous lectures in del 2 and inside 

there are the invariants, here also there is an invariant. So, Init l 1 intersection in l 1 union I mean 

along with that I have this Init l2 intersection Init l2 along I mean. So what I have is l1, this Init l1 

intersection this that is one possible initial region. Similarly for l2 if there is any that means if these 

are both valid initial locations then I can enter Init l2 with the initial set of value valuations Init l2.  

 



 

But not all of them may be valid not of them satisfy the invariance. So again Init l2 intersection 

Init l2, so and so forth and their collection so that is my set of initial regions. So, the next thing we 

do is we apply this post operation k times on this set of initial regions. What does it give me? It 

gives me the set of regions which are reachable by that automaton starting from the set of initial 

regions and with k number of discrete switches.  

 

 

So, with one switch whatever are my reachable regions that is given by one post operation, apply 

post operation k times that I get, well I start in these initial regions and there are k possible discrete 

switches what are the set of regions I can go. So, that is this set post Ik. Then what are my all set 

of reachable states for the for the hybrid automata? It is defined by this. So, we are we are basically 

giving mathematical definitions of reachability here.  

 

 

So, my reach set for the hybrid automata is simply given by this, that you apply post one time, 

two-time, three time, k time up to all the natural numbers and take their union that is your post 

star. So, then what is the reachability problem? The reachability problem was that. Well, if there 

exists some initial state from which there exists a valid run through which this give some given 

reach set is some. 

 

 

I mean this reach set is at all reachable or not. So if you remember that was our reachability 

problem. If we go back here given A and given R if there exists a reachable state of A that belongs 

to R that means whether there is a valid run in a starting from some initial state inside I that will 



eventually be a member of R which means post star I intersection the given reach set R is non 

empty.  

 

 

So, that is the verification problem here and the reach set computation problem is this, that whether 

I can compute this that is my reach set computation problem. And if I can intersect the reach set 

with the given reachable set and check that the intersection is non empty. So that is the verification 

problem that whether reach set R, I can reach at all. So, figuratively speaking, suppose this is my 

initial set of states where there exists A path which reaches this R from I.  

 

 

Now how can I compute this? Well, I can go on computing post1(I), post2(I) like that and check 

for some k, that whether this happens that after doing the post operation the region that I get does 

not have more number of I mean points or states which are not part of the previous post set. That 

means if I can get something like this that postk + 1 is contained inside or is equal to postk, if I can 

get this.  

 

 

Because if I can get this then eventually I can always I can apply this inductively and I can say that 

well this holds. That means well this is my final set I can say that. Why? Because this is kind of a 

monotonic construction going on here. However, this construction in most cases may not terminate 

for linear hybrid automata, but for some sub classes so that makes the problem undecidable itself 

but for some sub clauses of linear hybrid automata.  

 

 



For example, timed automaton timed automaton, rectangular hybrid automaton, the problem is 

decidable. We will see what it means, it means essentially that there are computational procedures 

or well-defined algorithms through which I can actually figure out whether this I can actually 

compute these two sets and I can actually check whether this condition is non empty or not, for 

certain subclasses the problem is decidable. 
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So, the issue is that well in general constructing this reach set may be difficult for the given initial 

region but let us understand what is my problem. I mean I finally want to see whether this 

intersection is non empty. That is what I want to see, that I start from here whether I mean. So, this 

is the overall problem that means from here if I have a reach set which is this from. So this is I and 

let us say this is post*(I) and let us say this is so that is how I went and this is R whether there is a 

nonempty intersection or not that is what we wanted to check. 

 

 

Now while this may be difficult if I am trying to see if it is non empty or not. Essentially, I am 

looking for one run, one run which starts there and ends in this intersection. So, while doing this 

may be difficult it may be easier to guess some states from where I can apply some heuristics to 

make a good guess and find out a valid run which lands up here. So, I take one state which is a 



good guess and I see what is the valid run which eventually goes to a point which is both a member 

of this set and this set then also I am done. 

 

 

So, while the overall problem may be undecidable the verification problem may still work because 

I can I mean eventually I am looking for some run or in or there is another thing we can do also 

we can see how the reach set is getting constructed. That means how this post one, post two, sets 

are getting constructed and from that if I can come up with a closed form expression of this post 

operation. So, let us understand what it means through an example. 
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This is the invariant, this is an example we are drawing and now I am writing the flow relations. 

So this is taken from the same paper we talked about earlier. Again, the invariant again I am writing 

the flow relations this is a transition guard. So, see this is the initial valuation x = 0, y = 1, z = 1, 

invariant for location one let us x less than y let us call this s1, this s2, this s3 and the gradients are 

x dot is 1 and the others are 0.  

 

 



And this is the transition guard x = y then I will switch to s2 where the invariant condition is this. 

And again, the flow relations are so you can see x will, now decrease the others are remaining 

same and then when the guard condition is x = 0 I have a reset of z to 0 and here is invariant is z 

less equals 1 and x does not have any flow value I mean its zero and y and z have time lapsing I 

mean they have a constant flow value of one.  

 

 

And in state s3 I am and then there is a guard condition of z = 1. So when z was reset and z increases 

up to one then I make a transition to s 1. So, the idea is that well I can see how this reach set is 

growing and if I am able to write a closed form expression for this post operation. Now if you can 

see for this example automaton, we can actually write reachable region definition which will be 

given like this.  

 

 

So, I can either be s in s 1 with the valuation sets I mean they have been captured by a predicate 

looking like this. So, i is a natural number which satisfies i greater than 1 and x less equals i and y 

= i and z = 1. So, I can be at s 1 and I will have these conditions being satisfied here or I can be at 

s2 or I can be at s3. s3 will have x = 0 and as you can see, I mean the guards I mean I get into s3 

only when x = 0 and here x does not change.  

 

 

So, x remains at 0. So that is how this reach set would look like after a few iterations I can write it 

in this kind of a form that the reachable region is described by this relation. So, in general what I 

am really looking for? I am trying to look for a heuristic which will kind of guess this reachable 

relation and write it in the form of a linear predicate where I could bring in, I mean the general 

form here is like this that you bring in some new variables.  



 

 

Let us say here it was just I so in general it can be some i1 some there exists some ij etcetera 

belonging to the naturals and you will have a predicate defined over this variables. In addition to 

the automata variables which are already there I mean the x y z etcetera that I have. So, overall, I 

am looking for this kind of expression and whether I can create a algorithm a heuristic which can 

do a few iterations of the reset construction that means the creation of the post relation and create 

this kind of an expression. So, that is what I am looking for here. 
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So, that is what we discussed that the reach set formula can have a new set of existential quantifiers 

along with the automata variables. Now the best possible situation can be that if we can guess the 

reach set to be parameterized by this number of post operations. What it means is if I can directly 

write convex relation a predicate which is parameterized by the number of post operations I am 

doing.  

 

 



That means starting from the initial region i, if I take j number of discrete transitions my reachable 

set is given by this predicate R which has j as a parameter itself. Now what is the advantage of 

that? The advantage is the; I mean I can then just use some method maybe a theorem proverb or 

some other automata theoretic method to figure out whether the following base and inductive 

conditions are satisfied.  

 

 

So, I will just check that will R 0 is given by this condition that Init l intersection Init l like this 

and for all j the I mean any natural number I mean post R j is defined like this I mean because if 

this holds then post j is R j. And post 1 post applied over R j is nothing but post j + 1 over I which 

is R j + 1, I can just write this. So, then I have a straight forward close form expression which gives 

me the reach set. Well even if that is not possible.  

 

 

Well in this case we show that it can be possible, even if that is not possible it may help if I can 

define such an inductive invariant and we will see that how such close form expressions and 

discovery of invariance in this way can help me to verify the safety of the hybrid automata. We 

will see that. 
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Now coming back to this example, we can actually see that I can have such an expression like we 

just described. So let us just define such an expression. So, what we will do here is we will bring 

in another variable j and we will add constraints like this. So, this essentially characterizes the 

three states I mean let us see that how I can define this reach set as a parameter of the number of 

transitions I am just taking.  

 

 

Let me just rewrite this. So this remains same and then I have. So this is forcing the value of i to 

be of a specific form and along with that I will have all the previous constraints like i greater than 

1 and x less equals i and the other constraints which I just wrote earlier or we will have for s2 

similarly, we will have j = 3 i + 1 that again makes this as a specific constraint here along with 

whatever we had earlier and s 3.  

 

 

So, it is the same i keep on repeating here with j = 3 i + 2 and all the other constraints that we 

wrote there. So, what happens is now this guess that I have that there exists some j which belongs 

to the set of natural numbers R j. Now this is basically representing the number of iterations. So, 



overall, this is how we can create a reach set definition parameterized by the post operation and 

that can help me in the verification process. So, we will end our lecture here and in the next lecture 

we will continue from this point, thank you. 


