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Hybrid Automata Based Modeling of CPS (Continued) 

 

Hello and welcome to this course on Foundations of Cyber Physical Systems. So, let us move on 

with our lecture. 

(Refer Slide Time: 00:38) 

 

So, we have been talking about these properties of regular languages and we have discussed that 

under what operations the set of regular languages even closed etcetera. So, now we must define 

the corresponding algebraic operations on which this I mean how I can really generate language 

which or a corresponding automaton which is a union I mean which whose language is basically 

the union of the two input languages or similarly the intersection of the two input languages. 

 



So, let us see about that. So, let us create a union automaton first. So, let us take the two regular 

languages L1 and L2 and for them we have these automatons that exist and their tuples are given 

by  

𝐿1 = 〈𝑄1, 𝑄0
1, Σ, 𝛿1, 𝐹1〉 

𝐿2 = 〈𝑄2, 𝑄0
2, Σ, 𝛿2, 𝐹2〉 

So as you can see that we are assuming that of course the alphabets are same here. Now it can be 

easily shown that the union of these two languages can be accepted by an automaton A for whom 

the tuples can be defined like this. 

 

So, if we want to define the transition function of this automaton, it is something like this.  

𝛿(𝑞, 𝑎) = {
𝛿1(𝑞, 𝑎), 𝑖𝑓 𝑞 ∈ 𝑄1

𝛿2(𝑞, 𝑎), 𝑖𝑓 𝑞 ∈ 𝑄2 

So, let us see what we have just done here. So, we are saying that the final automaton will have its 

effective set of states which is nothing but the union of the set of states of the original to automaton. 

The set of initial states will also be nothing but the union of the set of initial states of the original 

two automaton.  

 

Similarly, for the set of final states and the transition function is also going to be like this, that its 

either going to. So, this fine this bigger automata the union automaton will be changing states 

either using the first transition function, that is the component one I mean a one's transition function 

or a two's transition function based on I mean which state it is currently in, if it is a state it is a 

member of these or if it is a state which is a member of this.  

 

So, I think that is I mean that is very simple to understand that what essential is happening. 

Basically we are combining this automaton their stairs their final states and their transition function 

everything. So, essentially that will give the I mean that automatically will create an automaton 



which will accept kind of any string which is accepted by any one of this automaton. Now there is 

the union case, now let us look at the intersection case. 
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So, for creating this automaton for the intersection what we will first do is we’ll create a Cartesian 

product of the two state spaces, we will create a Cartesian product of these two state spaces of the 

in two component automatons. So, essentially the set of states here will be given by this product 

that means the states will be like tuples. So if you have state q from com automaton 1 and if you 

have a state r from automata 2.  

So, this (q,r) is like member of this set. Similarly the set of initial states. And if you look at the 

transition function now. So, it is now operating on this kind of state tuples, so this is a state tuple 

on which the transition function is operating and let there be an input event sigma. So it will just 

follow both the transition functions. So it is like this. So, using sigma wherever I go from q1 and 

using sigma from wherever I go from q2 both of them will be followed.  

 

So, that is how the intersection would be defined. Now what about complement? I think before 

going into complement, we will need to define what does it mean by your automated description 

being complete or what does it mean by an automaton description being total. 
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So, let us draw an example. So, this is the definition. If I mean all the transitions that are possible 

in the automaton have to be defined. So, we take this example automaton here. So this is your 

initial state with the self-loop let us say. So let us observe this automaton for a while. Are all the 

transitions defined. So, if your alphabet is this a and b there are only two symbols in this alphabet. 

That means the requirement is that from every state there should be a defined transition following 

all the members of this alphabet set. 

 

So, from q1 with ai go to q1 only, from q1 with bi go to q2, from q2 with ai go to q3, but from q3 with 

ai go to q3, from q3 with bi go to q2, but from q2 with the input event b where do I go that is not 

defined. So, this is not a kind of total or complete automaton. So, how do I make it total? So, for 

all such cases you can create an equivalent automaton, equivalent in the sense that the language 

will be equivalent, by just adding a transition like this two an extra state which we call as a dead 

state or a terminal state. 

 

That means since the original automata was not supposed to go anywhere with b. So let it if the b 

happens in this state let it go to this kind of a terminal or a dummy state here and then the automata 

should be stuck here, that means, with a whatever input comes it is not going to be anywhere. So, 



that is how you create a complete version of this automaton that means all the inputs and etcetera 

are defined all the possible transitions are defined.  

 

Now for any such complete automaton if it has a language L, we can define the corresponding 

language complement of L by a very simple transformation. The transformation is just complement 

the state of final states that means whatever is the current final state should not be the final state 

and whatever else other set of states are there should all be final states. Now how does it help?  

 

What is the complement of the language that means whatever strings lead to accept they would 

not be accepted. And all possible other strings in sigma in the entire universe of the language must 

be accepted. So, that is what, that means you make everybody else as final stats without the current 

final step. So, that is how you define a complement language. 
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Now just to recall I mean just to remind everybody that the reason we are talking about languages 

their classes and the importance in the context of CPS is that like we saw that regular systems 

regular discrete systems like vending machine like maybe some other system they can be 

represented by this kind of automaton. And if we know the properties of automatons, we also know 



that which other complex system which can be broken down into this kind of simple systems is 

also a finite automaton.  

 

Or how I can build a larger model of finite discrete system using some smaller models. So, these 

all we are able to connect with this language theory and system modelling by doing this part here. 

Now just another operation we will like to define here, another operation on this proper on this set 

of regular languages and with this we should be done with this specific part here. So, let us take 

up two languages L1 and L2 and we define their concatenation as this.  

𝐿1 ⊕ 𝐿2 = {𝑠 ∈ Σ∗, 𝑠 = 𝑎 ⊕ 𝑏, 𝑎 ∈ 𝐿1 ∧ 𝑏 ∈ 𝐿2} 

So, it is a set of strings where every string is further a concatenation of two component strings 

where the first component is from L1 and the second component is from L2. So, as you can see that 

this operation, we are lifting this concatenation operation we are actually lifting from strings to 

language, and we are saying that languages can be concatenated just like strings can be 

concatenated.  

 

For example, let us say ab is a string and aba is a string. So concatenation of this is nothing but we 

just write them together we just teach them together similarly we can switch languages together. 

Now why is this important? Because think of concatenator language with itself, so L square I can 

define L square as nothing but L concatenation L. And this gives us in this way I can define L 

cube, L4, like that and finally L star.  

Or the closer the clean closer of the language like this, 

𝐿∗ = ⋃ 𝐿𝑖

𝑖∈ℕ

 

set of naturals L to the power i that means all possible powers of L you take the union. So, for any 

language you can define its screen closure like this. Now why is this very important? Because 

given any language L I mean operations like I mean you can have concatenation of I mean peak 



two languages L1 and L2 they are concatenation is also is a regular language. Not only that they 

are clean closures L1*, L2* they are also these regular languages. 
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Now in this context there is another important concept which is known as regular expressions. So 

that is just another way to represent regular languages in a succinct form. Let us see that. So, what 

are really regular expressions? So, if we have to define what is a regular expression it should be 

some, we will start it like this. So, it is a definition which goes like this that the nulls, the null set 

of strings, the empty string, and any, I mean all strings made with singleton inputs from the 

alphabet, they are regular expressions, they are all regular expressions in their own capabilities. 

For any or any symbol in the alphabet that symbol itself is a regular expression the empty string is 

a regular expression, the null string is also a regular expression. And inductively we can say that 

if we pick up any two regular expressions r1 and r2, then r1 + r2, r1 concatenation r2 and r1 star r2 

star they are all regular expressions.  

 

Now of course what does this mean this simply means r1 + r2 simply means the language of r1 

union language of r2 that is the corresponding language. So, I can just say something like this I can 

just take a language theoretic view here and define all these things. So, the language here of this 

regular expression simply is the null set. The language corresponding to say every regular 

expression corresponds to a language which is a regular language.  



 

So, this is nothing but a language containing only the empty string, this is the empty string. The 

language corresponding to a regular expression which has only one symbol is nothing but a 

singleton set with that symbol. Language for r1 + r2 is nothing but the language for the regular 

expression r1 union the language of the regular expression r2 language of this is now, this is where 

our previous definition will come in.  

 

So, if you can see that the previous definitions tell you how to expand a regular expression to a 

language and here you are just, I mean defining these operations with concatenation like we define 

earlier and language of some regular expression r*. So, this is how r star is defined. So this 

definition is in terms of the language itself, so you will have you just take what is the language of 

r and star over there apply the star operation over there.  

 

So, this is how we link up we define regular expressions in this in this recursive manner. The basic 

regular expressions and their combinations using r1 dot dot to r2*, r2*, r1 + r2 like that. And we use 

this there I mean we see their relations with the corresponding language definitions that how a 

regular expression is defined or operated upon in using the operations that we have defined on the 

regular sets. 

 

So, if we use these notations of regular expressions that means the notations, we have introduced 

are plus dot plus connects with at the language theoretic union, dot connects with the language 

theory concatenation and star is the language the clean closure of the language. 
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And if you use these notations to define what is the language of the vending machine automaton, 

if you see it will be something like this is kind of obvious. So, you have a coin and you go coke 

plus Pepsi there are two choices here and then there is only one choice taken and there is a loop, 

so it will generate a clean closer and you will have something like this.  

(Refer Slide Time: 22:13) 

 

So, will end this discussion with maybe one more example here. So, let us take another sample. 

So, here let us assume we have a Boolean alphabet so s0 is 1 this is like an automaton here and as 

you can see is this DFA or an NFA well from s1 you have two possible states. So, I can just write 



delta s1 with 0 you can land up in s1 or you can land up in f both are possible. So, it is definitely 

an NFA here.  

 

Now can I create a regular expression for the language of this automaton? Of course, yes, so I have 

asked you have a one. So any string that is accepted by the language must start with a one. Now 

after the one if you see you have two choices here you can loop in here or you can loop in here, so 

you can non-deterministically select whether to loop here or whether to loop here. You see this 

loop is also kind of inhabitable.  

 

I mean because you can just come here and stop or you can just take this loop and then take this 

loop or this loop again. But eventually you must take this 0 to get to the final step. So, it is certain 

that you start with the one here and you end with the zero here. For any string that is to be accepted 

these two things must be the case and in between you can either loop here from s1 or you can to 

or, so you have this choice here, you can just execute this loop that is it.  

 

So, start with the one have a loop here or have a 0 1 loop here and eventually have this 0 at the 

end. So, that is how this automata is going to operate. 
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So, this is about our treatment of regular languages and automaton. But the eventually we want to 

study what we have called as hybrid automata and here we will be just trying to motivate why 

hybrid automata is required. So, as we have seen that simple discrete systems with discrete states 

and jumps between discrete states can be modelled using finite automaton. But what is important 

is finite automaton is unable to capture any kind of continuous dynamics which is kind of a very 

important property. 

 

I mean any hybrid automata and any Cyber Physical System for that matter may have some 

continuous dynamics. So, since finite automata is only about discrete state switches it cannot 

capture continuous dynamics. So naturally it cannot also capture I mean this kind of switching that 

may happen between a discrete and continuous dynamics. Now this above thing this discrete and 

continuous dynamics and their switch is like a standard property of Cyber Physical Systems. 

 

Why? Because every Cyber Physical System will have some real time software. So that is the 

discrete part and that would activate the control surface of a physical system which is have some 

continuous dynamics. So, let us say you have an antilock brake or some other system like a cruise 

controller, so it will be taking some discrete decisions and those decisions are taken by the 

software.  



 

So, these are the logical changes that are happening to the system and they will be manifested in 

terms of a control input and based on the control input the car's dynamics will evolve here. So, that 

is a continuous evolution, so you will have discrete state changes here. So it is like here you have 

an automata based model of a program where the system is jumping among states and it is kind of 

calculating control inputs for this and then there is a continuous evolution.  

 

After that there is signal, I mean a measurement sampled here and again this automaton is going 

to take some decision. I can think of it like this, now that would automatically mean that I need a 

system where I need a finite or I need a formal model where both these things can be captured 

which unfortunately, we cannot do using a finite automata. 

(Refer Slide Time: 28:41) 

 

So, just to get into the hang of the situation to pinpoint to exactly what is the problem with this, let 

us take another example. We want to model a light switch. So, this is also an example taking from 

the same book which we talked about earlier from where we took the vending machines example. 

So, here we have the light switches specification written. The specification is very simple this is 

the English language specification initially the switch is off. 

 



So, q0 is a state which says that the switch is off. So, in fact let us write it here. So this is the off 

state and if we press this button then the switch then the light is turned on here and if we press that 

button immediately again then the light will become brighter. So, the light is brighter here but for 

the light to be made bright it is essential that the switch is pressed twice very quickly starting from 

the offset immediately after you make it on you must press again. 

 

So, that means these two presses these two events must not be separated by I mean more than 3 

seconds these two events should occur inside 3 seconds for this to happen and if these things differ 

by more than 3 second then the light actually turns off it does not become bright. Now clearly as 

you can see that this is a requirement which this finite automaton does not understand, I mean we 

are unable to model it.  

 

This automata model that we have cannot capture this intricacy of time, calculation over time, I 

mean, difference of time etcetera. It just has this press event; it is unable to distinguish between 

this press event and this press event by figuring out what is the amount of real time in which this 

press events differ. I mean because if the press event occurs within a short time interval, then it is 

this press event the automaton goes this way.  

 

If the successive press events occur with a bigger time interval, then 3 second, then it is actually 

taking this path this press event. So, that is the specific issue, the finite automata cannot distinguish 

between the small and large interval of the successive switch pressings and that that makes this 

model not very useful in this context. So, this tells us that what we desire to be in a hybrid 

automaton.  

 

So, in our next lecture will be introducing this formal tuple of hybrid automaton and we will be 

talking about how this specific example can be modelled as a hybrid automaton. Thank you for 

your attention. 


