
Foundation of Cyber Physical Systems

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

 Lecture - 28

Hybrid Automata Based Modeling of CPS

Hello, welcome to the course. Today we will be talking about the topic in lecture 6 primarily week

6 topics.

(Refer Slide Time: 00:39)

So, what we have new in this week is we will be talking more on modelling aspects of Cyber

Physical Systems from a formal perspective. So, let us understand what it means.

(Refer Slide Time: 00:51)

So, we will be talking about automata theoretic Foundations of Cyber Physical Systems. Now the

one may argue that why is that required because for analyzing Cyber Physical Systems you will

need to have some method through which you can create a formal model which is both simulatable

as well as it has the mathematical recurve in inherent in it is in the way that it has been built, so

that you can do some formal app for some application of formal methods through which you can

guarantee certain properties of the system. And as we all know that these are safety critical systems

so we need to figure out that we need to actually have methods through which we can actually

claim that these systems are going to be safe, they are never going to create an unsafe region stuff

like that.

Now one way for doing that would be applying formal methods and also simulating them with lot

of inputs. Now in both cases for simulation as well as applying some formal logic-based reasoning

method, we need a sound semantic foundation in the modelling paradigm of the Cyber Physical

System. So, what we will be touching upon is hybrid automaton-based models. Now hybrid

automaton is kind of advanced automotive theoretic representation which is definitely required for

Cyber Physical Systems. So, let us let us understand what it really means.

(Refer Slide Time: 02:29)

So, before getting into hybrid automaton, we must understand that what really a finite automaton

use. This is something that some people may be already aware of but of course this is an

interdisciplinary subject and looking at the general audience we start from the basics of finite

automaton here, what it means by a finite automaton. So, a finite automaton is a mathematical

structure which is primarily used to model systems where the number of states is going to be finite.

That is why basically a finite state automaton. Now they have got their usage in several branches

of engineering. In computer science we have we see lot of usage of finite automaton or finite state

machines in the specific context of digital circuit design, synthesis techniques etcetera. And of

course, in several other branches we have got this kind of finite automaton-based modelling of

systems it is used for representing a large class of systems.

So, let us first understand this mathematical tuple. So, overall, a finite automaton is given by this

kind of a tuple with five entities. So, what we have here is the first entity which is nothing but the

set of states. Suppose I am trying to model a system. So, what are the different states in which the

system can be located at any point of time so that is like a finite set of states. And a subset of that

is Q0 which we call as the initial states.

That means that these are the states from which the system may start and then they may be evolving

to some other state etcetera. Now what we have next is sigma which is a finite set of symbols

representing inputs. So, essentially you have a finite a set of symbols which kind of trigger the

transition of states from one state to another state and this set of symbols is known as the alphabet

of the automaton.

Essentially this is the standard symbol which is used in most books. Now we come to the next

thing which is what we call as the transition function. So, delta represents a transition function

which actually tells you given a state and given an input, on which state possibly the system might

change over to. Now as we can see that on the right-hand side, we have this 2 to the power Q

instead of having just Q. That means well this is used to have two possible meanings here.

I mean it this is used to represent two classes of automaton and this is the most general

representation. So, once we write 2 to the power Q, that means we are talking about the power set

of states, which means in the general case given a state and an input we are saying the system can

go to a set of possible locations or set of possible states. Now so that is what it means when in the

right-hand side that is the range set is represented by this power set of the set of states.

Now had this been Q, that means for every state and every input we would be giving only one

choice to the system. So that is a deterministic automaton. And once we make it as 2 to the power

Q, we are saying that given a state and an input, the system can jump to a set of possible states any

one of them. So, this brings in the notion of non-determination in the system and that is what we

call as a non-deterministic finite automaton.

And finally, what we have is a set of accepting states F is a subset of Q that means if the systems

run is getting into any of these five accept states, then we say that we have a sequence of inputs

for which is accepted by this automaton. We will see more into that in detail.

(Refer Slide Time: 06:39)

So, let us take some examples here. So, what we have is an example of a vending machine. So, let

us see what a vending machine is. So, well it could have been modelled in many possible ways.

This is just one possible simple modelling of a vending machine. So, we are saying that if the

machine which can be in any of these four states. And so, when I represent a state with an incoming

arrow from outside so that is like what we call as the initial state of the system.

And also, if I represent a set with two concentric circles that is typically the symbol which we will

use to represent a final state. In this case it happens to be that both the initial and the final state are

same. So, this is where the vending machine starts. If an input in the form of a coin is provided it

goes to another state where it will ask for a choice from the user. Whether the user wants a coke

or a Pepsi based on whatever the user inputs it goes to either this side and dispenses a coke.

So, it will and once the user takes the coke from the vending machine so that fires this event taken.

So, you can see that these are all user inputs. The user inputs are driving the machine, the user

gives a coin, the user gives a choice of coke, the user, the system goes to the state here where it

will dispense a coke and when the user picks up that so that is the last event taken and the system

is reset to its original state.

So, as you can see through this example you have a finite automaton with these four states q0, q1,

q2, q3 and q0 is the initial state. And sigma is kind of the alphabet of the system coin, coke, Pepsi

and taken. So, these are the four inputs that you have. And here we have our transition function.

So, this transition function is kind of representing all these transition relations that we talked about

that well if I am in q0 and a coin comes in the system will jump to q1.

If I am in q1 and the event coke comes in the system jumps to q2 and so and so forth. So, that is

how it operates and we have this final state that is q0.

(Refer Slide Time: 09:04)

So, here we have this systems example with a run where we start at q0 and then we go to q1 then

q2 and then again q0 and that is how the system works. So, as we can see that in this run this

sequence of inputs that is coin, coke and taken. So, this sequence of inputs taken from the alphabet

they form a member string of the language of the automaton. Why? Because with this string the

system could start from the initial state and the system could reach the final state.

In this case both the initial and the final state happen to be the state q0. Now coming to another

important property that what do I mean by the language of the automaton. Now as we said that

language of the automaton is something I mean for example this is the candidate string of that

language. That means in general we can say that any string which takes the system to the initial,

from the initial state to any final state is inside the language of the automaton, and that kind of

succinctly defines given any automation A, what is its language let us say LA. So, we can just

define it like that. Or in symbolical terms, this should be written as like this string is a member of

the language of some automaton A, where this A is the automaton for that vending machine that

we have been talking about. So, overall, that is how for given any automaton we can define its

language and this leads us to some interesting properties of regular languages or languages

accepted by finite automatons.

We will I mean in general any automaton if a finite automaton if you can create any finite

automaton the language that the automaton accepts is known as a regular language in the terms of

the language formal language hierarchy in computer science. And it happens to be the case that

such languages are closed under set operations like union, intersection and complement. So, that

is the standard set operations that we know of.

And what does it mean by the language being closed under these operations. So, let us try and

figure out what is the inner details inside this.

(Refer Slide Time: 12:07)

So, before that we will also discuss some more examples. For example, this is the garage counter.

So, this is a simple example which has been taken from this reference book Introduction to

Embedded Systems or CPS approach by Edward Lee and Sanjit Seshia. Also, I must say that this

previous example was taken from this recent book Hybrid Dynamical Systems. So, we will

actually inside this course have many examples and many definitions which have been almost

borrowed from these books.

We will be explaining them but given that their definitions are quite distinct and perfectly done,

this is the primary reference from where this these things have been taken. Now coming to this

example so the reason we have this example here is something specific. So, you can see that we

are saying that well let there be a garage counter that means it is simply counting the number of

cars that are going inside a garage and the number of cars that are coming I mean some cars will

be leaving the garage.

And in general, we have a counter that is maintaining that the number of cars that are really inside

the garage and that is what is being counted here, that what is inside, how many are inside. So,

whenever a car gets in the counter will get an up-count signal and whenever a car gets out the

garage will get a down count signal. What we are trying to impress upon here is let us say that

maximum capacity is from 0 to up to M. So, the counter is going to have M number of states.

But what is interesting here if you see we are characterizing these events of that the count goes up

or count goes down by different what we call as Boolean predicates up or down or propositions.

And this will be events that either resolve to being true or false. So, basically these Boolean

propositions and their Boolean combinations will also become eventually Boolean statements

which are either true or false and we are kind of using them as transition cards inside this

automaton.

So, the idea is that when I am leaving the count 0 and going to state 1, this is the event that must

be true that the count the counter has two input lines. If you think of it physically, one is the

command to go up another is the command to go down. It can never happen that up and down are

both together one that is an inconsistent state. And similarly, so you have the only two these

possibilities it is up and not down and it is down and not up.

So, these are the two consistent commands that the counter can have. So, in instead of having just

an input event what we are having is some property about the system which is true. In this case the

properties that the up value is 1. So, this Boolean predicate is 1, the down value is 0, so negation

of down is 1 and they together is 1. So, this overall event is 1 it evaluates to true, logical true or

logical 1. I would say and that is why this transition happens.

So, as you can see that this is something that is acting as like what we should call as transition

guard. This is inhibiting the transition until this event becomes true and when this is true the guard

is relaxed and you can transit from here to here. The point we are trying to make here is that not

only it can happen that there is an input event, but you can also have this case that there is a

situation on which the transition becomes possible, and that situation can be represented by a

logical formula which will evaluate to true at some point of time, and at that point of time that the

transition is taken. So, this is like a transition guard which may or may not be active and that is

also dictating the transition here. So, that is what this specific example is trying to impress upon

you.

(Refer Slide Time: 16:25)

So, overall, this is the summary, that this is the finite state machine that counts the number of cars

currently present inside the garage. So, you have events like up and negative down that signifies a

car entering the garage, you have an input event like down and negative up, which signifies the

car leaving the garage. Let us take an example run of this. So, if it is up and they negate down, you

count up if it is down and negate up, you count down.

So, that is what is happening in this run. So, you can see that so this is primarily how this automaton

is going to operate.

(Refer Slide Time: 17:03)

Now coming to the other part that is properties of regular languages, that means like I said that any

language that we have there is a kind of accepted by a finite automaton is a regular language. So,

they have their properties, some of the properties they have already mentioned. So, let us give

some time to the understanding of this kind of properties. So, before getting into the properties let

us understand that in C.S. theory you have this hierarchy of languages.

So, in this hierarchy of languages at the lowest level you have the set of languages which are all

accepted by, so you can say that these are languages that are accepted by finite automatons. So,

this is what we call as regular languages. At a higher level we have languages that are accepted by

what we call as push down automatons. So, what is a push down automaton? So, this is at the

higher level. So a push down automaton is nothing but a finite automaton along with a stack.

So, it is just a normal stack that means it grows in one direction with a FIFO structure. So, in that

way we can say that every finite automaton is also a push down automaton. I mean, that means

because if every finite automaton there will exist a corresponding push-down automaton where the

automata structure is same and there is a stack which is not doing anything. So, this language class

actually subsumes the lower-level regular language class and this is known as what we call as the

context-free languages.

And over this we have the set of context sensitive languages, language is that are accepted by what

we call as linear bounded automatons. So, linear bounded automatons are essentially nothing but

tuning machines with a finite tape plane. So, we are not going into that detail. This is just for a

general picture here. The Turing machines are the highest level of computing power, they represent

the highest level of computing power.

That means it is a machine with a head that can read or write on an input tape. The there is some

input on the tape and the machine can read and write on the tape based on some transition function

and the tape is infinite at least on one side. Now when I make the tape bounded it is so that creates

a restriction on the machine and it is known as linear bounded automaton. So, the bound is a

function of the input string size in a linear relation.

So, that is my context sensitive languages and they pretty much subsume the set of PDFs which

also means that they pretty much subsume the set of regular languages. And at the highest level

we have languages accepted by Turing machines. So these are the unrestricted language class. So,

this is pretty much your Chomsky hierarchy or name so basically the language hierarchy named

after the imminent researcher I mean Chomsky.

Now the question where we will focus on is regular languages and their properties because they

represent languages which are related to finite automatons. So, let us get into that.

(Refer Slide Time: 22:02)

So, what we will start with is if you remember when we were talking about the transition function,

we wrote something like this. You are in a state and there is an input event. So you go to some

state. Now you can either go to a unique state or you can go to a set of possible states any one of

them. So, this representation corresponds to what we call as deterministic finite automaton and

this representation corresponds to what we call as non-deterministic finite automaton.

Why? Because of course in this case there is a unique state where we want to jump and here what

we have is a set of possible states and we want to jump into any one of them. So, let us take some

example, of a deterministic finite automaton and a non-deterministic finite example automaton.

So, just draw a simple example here. This is the accept states. Is this a deterministic finite

automaton? Not really. why?

Because if you see here this there is an input. You come here now from this state, we are saying

that based on the input A, I can either go here or go here. So, let us just give the state some name

let us call them as q0, this q1, this q2, this f1, this is f2. So, this is not really a DFA because of this

issue here because you have two possible states, I mean q1 and q2, where you can jump from q0

based on the same input A.

So, what should really be the DFA? Let us see. So, suppose this is the input. You are here, then

there is one a. You go here. And then there is there b or c and you either reach here or here. So,

look at this automaton. Now can we say this as deterministic automaton, yes, why? Because if you

see this automaton, all the transitions are uniquely mapping from a current state through a future

state.

From here you go to q0 from initially. Then from q0 with a you go to q1 and then q1 only if it is b,

you come here, only if it is c you come to f2. Of course, we does to say that both these and the

previous automaton the NFS version they accept the same language. Now there is something

important we must understand that while it may seem that NFS have got more modelling power

because based on the same input I can go to multiple possible states I mean any one of the multiple

possible states.

But still for any or NFA whatever it is its language there will be a corresponding DFA that exists.

So, I mean the set of all possible language is accepted by NFS is exactly equal to the set of the

language as excited DFS. All that may happen that for any NFA if you are going to create the

corresponding DFA its size will be exponential. The number of states that the DFA shall have will

be exponential.

So, for the language accepted by an NFA, there exists a DFA for the same language. So, that is

more or less of it.

(Refer Slide Time: 27:44)

Now what we have previously said if you remember that the set of regular languages they are

closed under properties like union, intersection and complement standard set theory properties. So,

let us first understand what does that statement even mean. So, when I say that this set let us call

it this set of all regular languages, I mean that is closed under any operation let us say union, what

we mean is pick up two languages from this.

Now languages are also sets. Because they are comprising a set of strings a specific set of strings

which will drive and the corresponding automaton from the initial state to the final state. So, when

I take these sets and I can operate them with a standard set operator that is union this will give me

another language let us say L3. Closed under union means this L3 which is resulting from this union

must also be a member of this set of regular languages.

Which means L3 if to put it in another way if L1 and L2 are regular, L3 must also be regular that is

all we want to say. Similarly, if L1 and L2 are regular, then L3’ which is an intersection there must

also be a regular. Similarly, if L is regular then negation of L that means the complement set of

the language must also be regular that is what we are saying here. With this we will end this

session. Thank you for your attention.

