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Hello welcome back to this lecture series on foundations of cyber physical systems. So let us 

continue on our attempt of discretizing continuous plant models. So we will just start from where 

we left of here.  

(Refer Slide Time: 00:42) 

 

So one small issue in this derivation that we have been doing. So you see these were the limits of 

this integral right and so this negative sign is already accounted for here because the tk term comes 

first. So this would not be here and of course we have multiplied everything with e to the power 

At on both the sides right. So that would mean fine you had this limits of e to the power I mean 

the initial term was - At here so you have a minus here and once you multiply both sides.  

 



So we take the power it this becomes 1 and here of course you have it then the resulting expression 

here is e to the power A (t - tk) right -1 because of this multiplying of both sides e to the power A 

t. So this is 1 and the other effect is well you are writing -A tk first. So this subtraction here this 

minus sign is off and due to this multiplying on both sides here we have t -tk so this sign is also 

not there and with this if we just continue to the next slide.  

(Refer Slide Time: 02:47) 

 

So you will have this. Now let us understand how this e to the power h comes will just explain 

once again. So if you recall from the last slide you had e to the power A (t -tk) here now of course 

your t becomes like we discussed already k +1 times h and t k is k h so you have h remaining that 

is e to the power h right. So again we will follow up the correction here. So this is your Phi which 

is e to the power h and this is your gamma B u(kh) by A and u k h by A e to the power h-1.  

 

So these are kind of standard derivations from the continuous to the discrete time right you can 

find in most of the popular books for example one reference is the book on a digital controller 

implementations by Astrom. You can find this done in a similar method in that book only. So like 

we said that for a given system if we want to follow carry forward this discretization you can even 

approximate this e series with the first few terms and just evaluate what is Φ and what is Γ and 

carry on from there. So fine with this if we just continue.  

(Refer Slide Time: 04:18) 



 

The next thing we have already talked about is the notion of stability in this grid time. So in this 

case your systems you have to interpret the poles and the zeros in the Z domain. And here you 

have to just check whether the poles are located inside, on or outside the unit circle and accordingly 

you will infer whether the system is stable, marginally stable or unstable.  

(Refer Slide Time: 04:42) 

 

So now let us come to the issue of where we have successfully understood that given the system 

in the continuous domain with parameters A and B how to transform it to Φ and Γ right and B and 

this gamma equal to if you recall from this slide. So it was B u by A e to the power h-1, u at k h of 

course and based on that we can derive Φ and Γ and then you have this discrete time model. Here 



and for this discrete time model let us be the case that we want to design the controller that means 

we want to place the system poles in a suitable location on the Z plane.  

 

So that we achieve this similar thing y is tending towards r as t tends to infinity and you want to 

design the K and F values. So that you have a controller like this. Again I will just repeat the sign 

depends on how you model the system if you consider u = - K x +F r that is fine. That is how you 

it will be in the flow diagram and you can just proceed accordingly so this does not really matter. 
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So the first thing we talked about controllability in our previous attempt of basic controller design 

in the continuous domain right so just getting back to that here also you will need to do the 

controllability check. But let us also understand what do we really mean by controllability. So an 

LTI system will be considered controllable if for any initial state. Let us say it is x(0) right for the 

initial state and there is a control input. So you have the initial state as x(0) the question is whether 

you can design this sequence of controls that is a control input u, u(t) so that you can ensure that 

your system is eventually steering towards a final state x(t) that satisfies your requirement of the 

target trajectory.  

 

So in a nutshell we can say that it is controllable if for any initial state x(0) control input u(t) can 

be designed such that inside this finite timeline t the state of the system reaches the target finds 

state final state x(t) which is let size near about to some reference r. I mean it is really controllable 



in that way. So I mean so the question is why do you really want to do this test? You will like to 

do this test in order to justify whether I should really attempt the controller design problem or not 

right. So the way we arrive at this controllability matrix is something like this so you just unroll 

x(k +1). So for x(k) you have this difference equation right.  

 

So be it in the continuous domain or be it in the discrete domain I mean you can just try this in 

both cases. So if you do it in continue discrete domain so that would mean just keep on applying 

this equation for different values of k right. So you have this relating x(k +1) and x(k) right now 

you can just unroll x k that means you can represent it in terms of x(k -1) then x(k -2) like that. So 

for example x k if you unroll you have this expression right because this is nothing but so that 

would give you Phi square x(k -1) =5 Γ u(k -1) + Γ. This u(k) the Γ u(k) which is the last term here 

right and in this way if you keep on unrolling and if you go all the way up to up to x naught and u 

naught right. 

 

Then you get this sequence right so you have Φk +1 x(0) + Φk Γ u(0) in that way you can finally 

have this thing as Γ u(k) right. So you have Γ u(k) then Φ Γ u(k -1) and so on so forth right. So 

what you can do is well let us bring this x term on the right hand side so you have x(k +1) - Φ to 

the power k +1 x(0) equal to now the rest of the expression that you have you see you can just 

write it as a dot product of this vector. This Vector which is comprising only the Φ and Γ terms 

right because this is gone to this side so what remains is well if you look from this and this side.  

 

So you have Γ u(k) then you have Φ Γ u(k -1) similarly the previous term here would be Φ2 Γ u(k-

2) in this way at the last you will have Φ to the power k Γ u(0) right. So this is the representation 

and if you see what this really means that well if this matrix will have a full rank that would mean 

that will you can really design this system of you use right from u(0) to u(k) and this really would 

make a set of possible solutions for x(k +1) right. So that is why we will say that this system has a 

solution if this matrix starting from Φ to so Γ to Φ k Γ this has a full rank and that is why this is 

called the controllability matrix.  

 

So the idea is that well if you can check controllability and you see that the matrix has full rank 

then this u k actually exists and otherwise this system of equation becomes trivial and it is futile 



to go about designing the control inputs in that case. So fine this is about controllability which we 

talked about earlier and just to kind of appraise you there is also a dual characteristics which is 

known as observability where the intuition is to check whether the input is rich enough to 

determine the state.  
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So just like controllability the dual properties that will consider the system to be observable if for 

any final input over a time interval. So you have this final input y t over this time interval you say 

that it is enough to reconstruct its unique initial state. So suppose you know y(t) the question is 

given this whether you can I mean if giving the final input it is a good enough information from 

which you can really reconstruct its state now. If you can look at a similar sequence of equations 

for y(k) so you can express y(k) in terms of x(k) and similarly you can write x(k). You can just 

write this expression of x(k) unrolled up to x(0) and u and this u(0) up to u(k -1) like we discussed 

earlier and similarly you can write that for y(k -1) and up to y(0) right.  

 

From this system of equations you can write this representation right so you have this times x(0) 

equal to this matrix comprising the sequence of y zeros right and this will also have a unique 

solution. If this matrix that you have uncovered here right and that has a full rank. So this tells you 

that will from the observability point is that well if I know the final output the question is whether 

it is possible that there exists an initial state from which the system eventually steers towards the 

final output. So you can observe that kind of states to be really true and with that it eventually 



comes to the final output. But anyway for our control system design problem let us go back to the 

context, we are talking about controllability check.  
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So what we need to do is well for our problem we need to do the controllability check and then we 

will do just the similar thing like earlier. We want to choose the closed loop poles at some locations 

and we will apply the Ackermann’s formula like we discussed earlier. But now note that what we 

are doing is we are doing it all for the discretized discrete domain plant model right. And then you 

apply the Ackermann’s formula and you apply the feed forward gain formula and well you have 

the controller's design. So it all remains the same and all you are doing is you are doing it on the 

discretized plant model so you just get a controller for the discrete plant model.  

 

So fine with this we will end our treatment here and we now move on to the second part where we 

will consider situations like well how when you are executing the controller there may be some 

imprecisions or in a I mean uncertainties in the system in terms of timing and how those things 

can disturb your design and whether your system design actually accounts for that. So what we 

essentially mean is well you have the controller for a discretized plan so your controller is now a 

software which is fine but now the software is going to run as a task and in a real time processor. 

So there may be delays in the scheduling there may be delays due to other tasks.  

 



So due to such delays the controller may not be executing and providing control outputs exactly at 

points when you want them to be there. So due to such delays whether your system's design is not 

satisfying the desired control performance criteria is something you want to know about. And so 

how do I how do I analyze that and how I can design a controller which will take care of such 

delays and it will work and meet its desired target objective inspite of such delays.  

 

So that is precisely what we will be looking for in this part of the coverage. So some of these 

materials have been taken from Professor Samarjit Chakraborty's course of course we have adapted 

it for our purpose. So let us first talk about this idea that well why such delays should eventually 

come in a control loop.  
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So let us understand that how embedded controllers are really implemented some of this we have 

already seen from our previous coverage on real time scheduling of multiple tasks together. So 

when you are implementing a control task you are also going to have some associated tasks. So let 

us say you have a sensor task that is going to read some sensor data and process them to extract 

some state information. So there can also be some A2D conversion so there will also be some 

image processing tasks maybe some estimation tasks etc etc., right some filters which are 

implemented as software all these tasks will be implemented and there will be running in the real 

time.  

 



Well there also will be some controller tasks which implement the actual control law and which 

will compute the control input. And note that control tasks not all controllers may be simple pole 

placement based controllers. They can be let us say a data driven controller they can be an optimal 

controller. So it is not that all the controllers are very simple and they do not take much time to 

execute some of the controllers may be quite intensive in terms of their computation that is why 

they may give delays to some other tasks other control tasks.  

 

And also the control input has to be sent to the actuator where and for this conversion from the 

control input to a real signal that the actuator circuit would understand you may have specialized 

software right. So for that you will have separate tasks. So let us so for example when we talk 

about sensing tasks so well A2D conversion is part of the hardware job but that signal processing, 

filtering, estimation these are typically the tasks which are performed on the raw sensor data and 

again this is the hardware task and for the actuator side.  

 

Like I said that you have computed a control input but when it is going to reach the actual actuator 

it may be some mechanical device right and that may need some conversion here from this control 

values to some suitable converted values which this mechanical devices input we are going to 

understand right. So you will also have a separate software logic which will do all those stuff and 

that is what we can abstract out here in our analysis as a actuator task. So now consider this 

example. So note one thing that we are not talking about in a real example here right.  

 

So we are just taking an abstraction, we are saying that well a sensor task will do this this 

functionality and actuator task may have this kind of functionality but of course in real life these 

things will vary based on the application right. So all we are doing is we are abstracting things out 

and we are trying to see that how their timings are going to impact the mathematical model of the 

controller here.  

(Refer Slide Time: 18:28)  



 

So let us take a scenario. We have let us say a task graph we have multiple sensors right and they 

are providing inputs to multiple controllers here. So let us say sensor 1 and sensor 2 they are 

corresponding to some sensing tasks right and those sensing tasks once those are done they lead 

to some control tasks. So sensor 1 and sensing to their processing will must precede control task 

𝑇𝑐1 and once the control task is done there will be a corresponding actuation task and then the 

output flows to actuator.  

 

So if you remember our discussions on scheduling we talked about actuations and communication 

from the actuation signal there would be related communication task etc., also. So coming here let 

us say this sensor is a, is actually sampling some common information for multiple controllers so 

from this you have sensing tasks also specific to controller 2. And then controller 2 will execute 

and then the actuation task corresponding to controller 2 will also execute and all these tasks must 

be executing on the let us say a shared processor which is an embedded platform here.  

 

So you have all these tasks that need to execute and all these dependence relations need to be 

satisfied. So for doing all that you needs scheduling so there must be a scheduler on this embedded 

platform which will schedule all these tasks in a perfect in a particular sequence without breaking 

their dependencies right.  
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So let us say we consider this sample schedule. So let us say well 𝑇𝑚1
 and 𝑇𝑚2

 must be say 𝑇𝑐1 and 

𝑇𝑚1
 and 𝑇𝑚2

 can execute any order. So let us say this is the order we have chosen followed by 𝑇𝑐1 

and then let us say 𝑇𝑚2
 and 𝑇𝑚3

 is executing here let us say now and then well after 𝑇𝑐1 has executed 

only then 𝑇𝑎1 can execute. So let us say we put 𝑇𝑎1 here and then 𝑇𝑐2 here and 𝑇𝑎2 here right.  

 

And of course there is no particular ordering required between 𝑇𝑐1 and 𝑇𝑐2. But let us say this is 

our sequence that 𝑇𝑐1 comes here 𝑇𝑐2 comes here 𝑇𝑚3
 is here and like that. Let us say that well this 

is the schedule that keeps on repeating. So this is the schedule that keeps on repeating here this up 

to this and then again as you can see this is just repeating.  

(Refer Slide Time: 20:56) 



 

So on the embedded processor what you have is you have this task square sequence so let us say 

this is a pure static scheduling. That means you have this task sequence and they are just executing 

in this kind of a particular order right. So let us say the measurement or sensing tasks you have 

their corresponding code is sensor 1 reading something from a port then doing some processing 

then sensor 2 reading from a port and doing some processing this control task will execute the 

corresponding control algorithm. Then there is the sensing transport 3 the third sensor then some 

actuation work that is sending some values to the some specific port and before that doing some 

processing something like that and then you have this control task and the other actuation task etc.  
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So let us say this is the last sequence that is going to execute and let us say you have one executing 

after another and this is your timing diagram of these tasks. Now if you look at these different 

timing values we have something marked as 𝜏1. So 𝜏1 is what we call as the sensor to actuation 

delay of 𝜏1. So once some value is sensed the corresponding actuation value is computed and it is 

ready for the actuator after this interval. So that is the sensing the sensor to actuator delay similarly 

𝜏2 is the sensor to actuator delay of the control task 2 and here you let us say you have the period 

of some control task.  

 

So you have this as the period for 𝜏2 and similarly you have this for the period of task 1. So here 

you have the period of task 1 that means after this the inside another amount of h1 task 1 must 

repeat like that. So when you are doing your mathematical modeling and design of controllers we 

make one important assumption. So what we assume is that well these delays are very small or 

negligible and we almost set them to 0. That means we assume that well once the measurement x 

is available immediately I mean u = -k x that evaluation is instantaneous because that is why we 

are writing the equation as u k. If you recall we are writing it like this right.  

 

So here also the kth instant and they are also the kth instant and so we are assuming that this thing 

is happening instantaneously. But of course that is not the case as we can see that well in real life 

you have these delays due to interferences from other tasks. And actual execution time mapping 

time and all this stuff which will happen in a task in a processor.  

(Refer Slide Time: 23:41) 



 

So in general this measurement or sensing tasks and the actuation tasks they consume negligible 

computation time and they are kind of time triggered. That means the sensor is always going to 

sense values and the corresponding processing tasks of the measurement will always happen in a 

fixed periodic manner. So they are like time trigger they are triggered by this period similar thing 

for actuation the sensor and the actuation tasks are all kind of time triggered.  

 

So this is going to work here and then again exactly after this period h this will again be triggered 

something like that. So like this actuation task is here and then again after some this fixed period 

will repeat and like that. Now this Tc this control task needs finite computation and typically the 

way it will be implemented is you will have a preemptive scheduler which can actually preempt 

this task in between its execution provided there is something of higher priority to execute. So that 

is why this is preemptive in many practical cases and also we say this event-triggered because this 

may have dependencies on processing right previous stage processing.  

 

So only when those things are happen that may end other high priority tasks do not exist are not 

executing then only this will execute. So this is kind of decided based on the relative events that 

are there around it right so it should happen sometime between Tm and Ta but that exact time is it 

is not deterministic it will be depending on the events that are happening around you the other 

tasks and stuff. So that is kind of an issue and we need to understand that well does it affect the 

control design.  
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So let us say your task the sensing task is here in blue, sorry in green and your actuation task is 

here and after this fixed sampling period the sensing task is again time triggered and in between 

you wanted to execute this control task. So you started it some I mean initially it was blocked by 

some other task then it has started here and then again some other task in and trigger some 

preempted it again it started here and it could not start initially because it can only start after the 

measurement of the or the sensor task executing. Let us say again it has to wait here because some 

resource is busy and let us eventually it executes and finishes here.  

 

So and it finishes here and let us say immediately here this actuation task could not start here and 

so there was some wait because somebody else was occupying the CPU. Then eventually this 

control input was processed by this actuation task here and this is where the actuation output is 

available. This wait is also actually not due to preemption but the reason is please let me repeat 

this. So like I said that typically the way we are designing is this sensing on the measurement tasks 

and the actuation tasks are going to be time triggered, because they are computationally lightweight 

and no need to make them as a function of some scheduling decision.  

 

So they are going to be always happening with this regular interval h not only for the sensor but 

also for the actuation. So your design should be such that this would always be kind of triggered 

from here actually up to this the 2 start points they will be separated by this h. So that is why if 



you come to our next picture you have a specific point right where this will work out and then this 

will start and also exactly a point where Ta is going to execute. So and this point is decided based 

on the maximum response time you may be budgeting for the control tasks. So let us say the control 

task I mean by your design it will finish by that maximum response time right and any and after it 

got executed it before it got executed let us say this is the i th instance.  

 

The sensor task or the corresponding measurement task must execute and it will satisfy this 

precedence relation and then maybe some other task of higher priority was executing. Then it 

executed then again it is preempted then again executed then again preempted and it got finished 

here. But this guy it can start because its event triggers it will start precisely here only and that is 

why we have this wait. In between other tasks we execute and they may be preempted again other 

custom execute stuff like that but the wait is specifically for this control loop. So the data that has 

been computed by this control loops control task is still not being processed by for actuation and 

that is going to happen here.  

 

So the way we are deciding this triggering point is that we are setting a deadline for this control 

task and we are saying that well you must finish by this deadline and that is exactly the time when 

I am going to trigger the actuation task. So if you see it is like that everything is happening in a 

cyclic fashion, so Tm is time triggered with period h, Ti is time triggered with period h but the 

relative offset between Tm and Ta this is given by as the deadline of the control task and it must 

finish somewhere in between. So like I said that everything is periodic at least Tm and Ta, and Tc 

but among them this guy is time triggered this guy is time triggered they may have this mutual 

offset and this offset time is the deadline inside which the controller must be able to execute.  
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So I hope this is clear. So we are just showing that picture here in the time continuum. So the way 

we are modeling is what we call as the constant delay model. So like I said the Tc can finish inside 

various times right so return it and in various instances of Tc can have various finishing time. So 

what we do is we can compute the worst case response time and based on that we can fix our 

deadline for that. So that it is greater than the worst case response time and that can be my choice 

of offset for this task Ta. So this offset will be equal to the deadline for the control task and at 

different instances of the control task it can finish at various points but all of those points should 

be inside the deadline right.  

 

So to sum it up Tm is periodically triggered and period is equal to sampling period. Let us say the 

offset is 0 the Tn the sensing is precisely happening right at the starting of the sampling period. 

Execution time is assumed negligible and the period is h the timing model for Ti is this is also 

periodically triggered but like I said the offset is equal to the control tasks deadline because we 

want the control tasks response to happen inside this deadline. So this response time the what in 

the worst case should be less than this Tc and sometimes it may be finishing here sometimes it will 

be finishing here but always inside this Tc.  

 

So if you can see that this is the period here and this is also precisely equal to h and this difference 

is the deadline Tc and Rc I mean this is basically Dc here and it can have several possible response 

times. Let us say for 𝑇𝑐1 the response time was R1, for 𝑇𝑐2 the response time was R2, 𝑇𝑐3 there is a 



third instance response time was found to be R3. So the worst case response time must be greater 

than all of these Ri s and it should be less than this value of deadline of the control task that we are 

assuming in this design and that is equal to the offset of this task Ta. So with this we can have to 

proceed so what we are doing is we are assuming the constant delay because we are getting a 

guarantee that Tc must finish before the delay.  

 

So that when we model the system we will assume that well the control task may finish earlier but 

it would not be that output on we used the moment it is finished. Because you see then the design 

would not deterministic. Sometimes the actuation will be earlier though sometimes the actuation 

will be later on and that may be very difficult to model. So in a simplistic manner we assume this 

constant delay and we will implement it in this way that means even if it finishes early the actuation 

happens exactly after the deadline. Now why we will do it is because then the modeling of the 

system becomes simplistic and then your parameters that you can derive for the system will be 

quite deterministic.  
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So let us say how this modeling can be done? So the way typically we consider the scheduling of 

the system is that well the deadline is mostly considered as firm. That means the control task must 

finish inside this. Now one important question is well what happens if the control task somehow 

overruns this deadline. Am I going to allow it to execute it complete it and then apply. So that 

means do I allow for what we call as delayed control execution or do we skip that execution? So 



based on this I mean how we implement the control we have different kinds of models of embedded 

control tasks.  

 

So in case we skip the execution then that means well this firm deadline thing is anyway not 

happening and you are not updating the control for certain control task instances. Now when this 

gives rise to a concept called weakly-hard deadline. Now this is a popular way of implementing 

real-time controllers nowadays. So what people do is people will show that well for the control 

loop as long as out of every k consecutive actuations you can actually achieve the execution the 

actuation in m of the instances you can theoretically prove that well the this this control loop is 

fine.  

 

So in theoretical way I can show that well as long as the controller actually updates for, m out of 

k number of instances the value of m and k is specific to the model and controller we are talking 

about. So if this can be shown and it can be shown in practice for many systems then we have this 

idea of weakly-hard scheduling that means well my deadline is firm but it is to violate the deadline 

in a bounded manner. That means as long as out of every let us say 10 consecutive deadlines I 

meet 5 of them, or 8 of them I say it is fine and that guarantee may come from the controller itself. 

So that is called weakly-hard. But anyway this is for your future reference.  
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Let us come back to our simplistic case where we are talking about firm deadlines. So we will 

think that well if a deadline miss happens the controller is skipping I mean the controller I mean it 

is an issue for the controller. So we are assuming that the design is such that the deadline is not 

missed but what is happening is that controller always finishes its task inside the deadline and then 

it waits and once we have this this time Dc gone that the actuation task will be triggered exactly at 

that point and the control update will happen.  

 

So just to repeat these are interesting task models allowing the control task to execute that means 

you are allowing more time to compute u k or you are not actually computing u k at all. So here 

what is happening is u(k) is not updated so it just remains as u(k) = u(k -1). So these are the 2 

situations and accordingly the control loops behavior will keep on changing.  
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So the ideal discrete time case is this that you start with the continuous time model you have 0 

order hold sampling your deadline is 0 that means immediately you get the control computed. So 

you have this situation which we do not have here and then you design the controller based on the 

discrete time model. So from this you get to design this and from phi gamma and stuff you apply 

and all this on this you apply the pole placement or other techniques and you derive K and F. And 

you have seen that where you are able to meet your objectives of catching up to the reference 

trajectory or not stuff like that. So that is your ideal discrete time case. 
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But in this case your situation is different. You have to think that well how should I design my 

controller that well I am able to tolerate this delay and nothing gets violated. So fine we will 

continue from here in the next lecture so I think our time is up here. Thank you for your attention. 

 


