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Hello and welcome back to this lecture series on Foundations of Cyber Physical Systems. So, |
believe in our last lecture we have been introducing briefly these concepts of mathematical control
theory and so we will just continue from there. So, we talked about what are the goals of control
systems in general. And the next thing we will talk about is how are they classified.
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Control System Classification : Open-loop

+ Asystem which does not possess any feedback network, and contains only the input and output
relationship

+ Utilize & controller or control actuator to obtain the desired response,

+ Examples are light swilches, gas ovens elc.

+ The drawback of an open loop control system is that it is incapable of making automatic adjustments
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So a control system can be an open loop system. So that means there is no feedback we talked
about feedback, but well there can be control systems where there are no feedbacks. That means

there is an initial command right and based on that, | mean, there is an initial command which has

been decided based on that well what is the output response | want, and accordingly, the command



has been decided and this it goes to the actuating device, and, this actuating device connects to the

physical plant or process and then we get to see the output, right.

So, for example you take a light switch or a gas oven etc., so you have a command and you can
see the output. Well some of these responses may be debatable. Like whether well I can see how
the light switch output is the illumination and I can maybe control it, I can look at the illumination
out of the gas oven and then I can control its amount of, the amount of turn in the knob etc.
(Refer Slide Time: 01:48)
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But definitely we will have open loop systems. For example let us say this one. So let us say there
is a missile launcher and the way you have designed this is like this. So again, this is taken from
this reference page. So let us say there is a control signal based on the and this is in a remote
location. So, you cannot really see it. There is no visual feedback also, okay, and from this remote
location you decide that well what should be this actuation command and accordingly a power
amplifier will send power to a motor and it will just control the angle of rotation here. Let us say
it is like that and there is no visual or image-based response, okay. If you have an open loop control
system.
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Control System Classification: Closed-loop

+ Aclosed loop system is one which uses a feedback control between input and output

+ Compares the output with the expected result or command status, then it takes appropriate control
actions 10 adjust the input signal

+ Examples are air conditioners, refrigerators, automatic rice cookers, automatic ticketing machines etc.

+ One advantage of using the closed loop control system is that it is able to adjust its output
automatically by feeding the output signal back to the input
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However typically we will like our control systems to have a feedback right the feedback will

compare, that well, based on my initial control command what has happened at the output based
on that it will take the measurement, it will compare the measurement with some reference input
that is there, and again it will adjust the control value and that is how it will keep on happening,

keep on executing the control loop in multiple iterations, okay. So, there can be several examples.

For example, the temperature control system in a refrigerator or an air conditioner etc. etc., right.
So of course, that is how typically you will like to have a missile launcher system also designed.
So, you will like to have this angular command here and then the measurement you will like to see
here that will what is the resulting angle, and then you will like to take it back here through a
difference amplifier which tells you that while what are the real error in what the angle | want, and
what is the actual angle happening and then this power amplifier will actually send a modified
power signal to the motor, right. Of course, | mean, | have not done the controller here it should
be.
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Control System Classification : MIMO
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Multi Input Multi Output (MIMO) System

So it can be for it, I mean, in general this can happen for a complex system where the where it is
multi-dimensional. You have a complex multi-dimensional system for which the output is also
multi-dimensional and the controller also takes multiple measurements so an X, y these are all
vectors right. And based on those measurements and based on multiple references with which you
will like to compare those individual measurements. The controller will also give multiple control
commands. So, all I am meaning is X, u, y, the reference everything can be a vector and this will
lead us to a multiple input multiple output or MIMO system here, okay.

(Refer Slide Time: 04:24)

Control System Components

1. System, plant or process

* To be controlied
Actuators

« Converts the control signal to a power signal
3. Sensors

+ Provides measurement of the system output
Reference input

+ Represents the desired output

~N



So just to sum up we have talked about the system plant to be controlled the actuators which
convert the control signal to a real power signal for the system or the sensors which sample the
measurements and send them as values to the controller, right. And the desired input which tells
that well, what | want my output to really be.

(Refer Slide Time: 04:46)

General block diagram of an automatic control system
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So based on all these values, | can have this kind of a following block diagram. This is a classic
control system block diagram so there is this set input or reference input and you have this feedback
signal from the sensors and based on this error your controller is acting and providing a control
signal to the actuator. An actuator will actually manipulate the variables and in the process these

actuated values can be disturbed.

And then inside the process you can also have some process noise and measurement noise which
will add for the disturbance, | mean inside the process and at the output, and then you will get a
disturbed measurement, right. So that is our typical control system works and again | will just
repeat this is a very basic block diagram in practice there are several variants of them.
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Modern Feedback Control System

So now if I look at a modern control system again what will happen is you have the process
dynamics the output is sense sampled using sensors and the measurements can also have some
noise included. And this output which is an analog output goes to the control computer where at
the interface there will be an analog to digital conversion, because the controller may be software

executing in a controller in in a computer which only understands these digital inputs only.

And it will generate a digital control output and that would be again converted through an analog
signal which in the process of transmission as well as actuation can be disturbed, right. And then
the actuator is converted to a power corresponding to signal based on the transducer required. It
may be a pressure transducer it may be a hydraulic transducer whatever, it depends on the system
that I am controlling and then it is fed back to the system, okay.
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A Practical Control System
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Temperature control system in a car

So some simple examples we have that typical controllers what they can do. Of course, these are
very rudimentary examples here. We will have controllers for many other complex works also. So,
this is an example of a temperature control system. | believe you will find this block diagram from
in in the famous book on Modern Control Engineering by Ogata, right. So you have the sun's
temperature which is kind of heating up the passengers compartment, right. The ambient

temperature is sensed inside the vehicle, right, temperature control system of a car.

And you also have a desired temperature and you have the radiation heat sensors, right. And you
have the compartment temperature and based on all this that controller is deciding whether it will,
| mean, act as in an air conditioning mode or a heating mode and accordingly it will manipulate
the temperature inside the passenger’s compartment, okay.
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State-Space Representation
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3. State variables: Minimum set of parameters which
entirely summarize the system’s status,

Now this is again a few, | mean, a recap, a pictorial recap what we discussed earlier that we arrived
at a state space representation and now if we want to write that state space representation inside in
with a feedback loop this is what we have. You have the system with input variables which are the
manipulated variables, the controls, and the non-manipulative ones which we cannot control which
are the noise right. And based on this your system will evolve and produce an output measurement
y, right. And you will and best and based on, you can take a subset of this and you can use them

for input to your controller.
(Refer Slide Time: 08:18)

Definitions

+ State: The state of a dynamic system is the smallest number of variables (called state
variables) such that the knowledge of these variables at £ = s together with the
knowledge of the input for ¢ = t,, completely determine the behavior of the system for

anytime £ = o,

Note: State variables need not be physically measurable or observable quontities, This gives

extro flexibily,



So, like we have already discussed what is the state variable, we will just recap that in a formal
way. So, the state of a dynamical system is the smallest number of variables such that the
knowledge of these variables known at certain time point together with the knowledge of the
system flow function, right, we will completely help me to, will help me to determine the complete
behavior of the system at any time in future, right.

(Refer Slide Time: 08:46)

Definitions

*+ State Vector: An n - dimensional vector whose components are n state variables that
describe the system completely,

+ State Space: The n - dimensional space whose co-ordinate axes consist of the x, axis, x,
axls, ..., X, axis is called a state space.

Note: For any dynamical system, the state space remains unique, but the state variables are

Ka

So based on this like we discussed that you have you can consider create an n-dimensional state
vector, and these vectors the possible set of values, these vectors can take is what gives you the
state space. So, for example if you have three dimensional system then you have variables x1, x>
and x3 and the given the systems trajectory restrictions and function it can take set of values in this
state space, right.
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Critical Considerations while Selecting State
Variables

Minimum number of variables
| Minimum number of first-order differential equations needed to describe the system
dynamics completely
2 Lesser number of variables: wont be possible to describe the system dynamics
3 Larger number of variables:
Computational complexity
Loss of either controllability, or observability or both,

Linear independence. If not, it may result in: O
1.Bad : May not be possible to solve for all other system variables
2 Worst: May not be possible to write the complete state equations “éa

Now this is a point we will try to come back again. We are always talking about minimum number
of variables. That means we need to be aware that what is the functionality that we are targeting.
A system like a vehicle may have many functionalities. But if we are talking about adaptive cruise

control, we are interested in only those parameters of the vehicle which affect the velocity, right.

So, using that idea we can identify what is the minimum number of first order equations that we
need to describe the system dynamics completely. And if so, that if we now leave out any one of
those equations and the corresponding variables which the equation updates, then we will be
missing some part of the system dynamics, okay. So, based on that we can identify the set of state
variables. And why do | want to have this minimum set? The idea is if | have extra variables which
do not relate to the dynamics of my interest, then I will have more things to compute right, which

| do not want to do in a real time setting, okay.

And also if we have extra variables for which the relations are not well defined, then maybe, I
mean, | may not be able to evaluate the systems value for those variables, if | do not take into
consideration all the variables which actually affect such things. Now these are things we have
already discussed.
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State Variable Selection

+ Typically the number of state variables (.e. the order of the system) is equal to the number of
Independent energy storage elements, However, there are exceptions!

* [sthere a restriction on the selection of the state varfables ?
YES! All state variables should be linearly Independent and they must collectively describe the
system completely

Now let us look into | mean how the state variables can give me the set of equations and what is
the standard form in which one would really like to write those equations. And this is an important
point that the state variables should be linearly independent and they must completely describe the
system. Now what do | mean by independence here? It means that well, | mean, I should not have
a variable in my system of equation, so that its value can always be inferred from the equations of

the other variables.

Then the equation which is giving me the evolution of this variable is not really necessary, right.
So that is why the state variables all of them should be linearly independent and so that is an
important point. And otherwise it also will mean like we said that if | do not have independent
variables, right, if I have more variables than equations then it may, | may not be able to come up
with solutions to them. And also, if | have more number of equations in the variables then | may
not have unique solution at each time point, right.
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State Space Model

Finite-dimensional linear systems can always be modeled’ using a set of differential (or difference) equations as

0

Jelinition (Continuous-time State-Space Model
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So that is the point so we need to have the minimum number of variables which distinctly define
the dynamics of the system under question, right. We do not have extra variables which are not
related to the dynamics and instead we just have the same number of variables as we have the
equations to have unique solutions to all the control to these State variables at specific time points.
So typically, that is how you will model the system here so now if we talk about the creating the

models.

So, we have already seen that let us say for each vector component we would like to have a
functional form, right. So, if we just recap that this is what we discussed, that let us say x was
having x1 and x2. Then for xi, let us say you have a function f and for x> its flow you have a
function f2, right. So, using all these relations overall, I mean, for the entire vector X, let us say you
are able to write something like this. So, this equation is telling you how the state vector x is

varying over time with respect to x as well as the control input u, right.

And similarly let us say, we also are able to write a set of equations for the set of observable
measurements y. And which tell me that well how y varies with respect to x and the control input,
right(13:35). So we have already discussed right that how to construct this form x dot equal to f(x).
Now we are saying that well x, I mean, when you have the controller so when I just talk about this

x dot equal to f(x) I am talking about all the variables together, right.



But now we have brought in the controller u, right. And we are considering them together as a
system right. So, in this case we will say that well this is a control system, so the evolution of x
does not only depend on a, but also it depends on this control inputs, right. So, if we write the
equations which tell me that how x evolves with respect to its own current value as well as the

control input, we have this equation.
d
Ex(t) = A(t)x(t) + B(H)u(t)

y(@) = C(@®)x(t) + D(t)u(t)

And then, if we start saying that well how the output measurement changes with respect to current
x and control input then we have this equation. And from these two equations we can understand
that well, the entire dynamics of the system the plant and the control, | mean, the entire trajectory
of the system x and the measurements of the system are defined uniquely, if we are able to compute

these A, B, C, D matrices for the system.

Now if you see here when we are writing like this we are assuming a linear system because we
have this linear form x dot = Ax, okay. And since we are making A, B, C, D all as functions of
time that means this is a time variant system. If it is a time invariant system then you will stop
writing A, B, C, D as a function of time here. Now if we write it in a discrete state space we like
we discussed earlier, then instead of making x as a function of real time t, we will write both of
these equations in this difference equation form.
x(k+1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)x(k) + D(k)u(k)

So that suppose that the kth time step so this is the k h time step so t = kth times the periodicity h.
What is the value of Ax is completely determined by the value of x at k and the control input at k
based on them the system evolves in some way. So let us say this was my x(k) and then at this
point we give some u(k) and based on that the system evolved like this. And then, at time k +1,

this is my x(k +1) value, and x(k +1) we can be computed like this.



Similarly for the system it has this set of State variables x, but not all of them may be observable.
What we can observe is some y, and y can be computed as a function of both x and u. Well for
most systems we will see that y is some Cx but it may also be a function of u right. So in a general
case we can say that what we observe is nothing but some C times x + some D times u here, right.
So, if you have x as some n size vector, your A is an n cross n one, right and the corresponding all
the other are the other matrices should have suitable dimensions so that the entire thing matches
together. Now considering that the system is linear time invariant this will not be functions of time,
this A, B, C, D matrices would not be functions of time right. So just to recap again, we talked
about how to write the system in this form.

(Refer Slide Time: 18:17)

State Space Model

Finite-dimensional linear systems can always be modeled using a set of differential (or difference) equations as
follows
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Jelinition (Discrete-time State-Space)
x(k+1) = Alk)x(k) + B(k)u(k)
y(k) = C(k)x(k) + D(k)u(k)
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And then we said that well you have to account for the control input itself. So together inside your
system if you have the plant P and the controller k let us say, then your plant state x, the plant state
x not only changes with respect to the plant's dynamics but it must also have a component where
you take into effect the contribution that comes from u. So that is why you will have this form Ax
+Bu and then for the output measurement also you have this form Cx + Du, which shows that will

how the measurement is affected by the plants state and the control input.

So, x is the plant state u is the control input and this set of equations kind of tell you how the plant

dynamics really changes over time and considering time invariant this won’t be a function of time.



Now let us also look into another interesting property of time invariant systems which is this that
of course this is we have made a linear assumption here, right.
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Linear Time-Invariant (LT1) Systems

If a continuous-time system is both linear and
time-Invariant, then the outputy ()i related to the Input x{t) by a convolution ntegrel,

E ] ‘ A{U)hCE= 0 = x(t) +A(Y)

where h(t) fsthe impuls respanse of the system,

And we are able to write this only for the finite dimensional linear systems. And if | have this
continuous time system which is linear and time invariant, then the output of this system vy is

related to the input x by what we call as a convolution integral, which is given by this.
y(t) = j x(Dh(t — t)dt = x(t) * h(t)

As essentially as you can see here, first thing is let us understand what is h. h is known as the

impulse response of the system. So, if you have a unit impulse function, right.

What is the impulse response if there is h then what really is going on in the convolution integral.
So essentially, you can think that well you are multiplying these different instantiated values of x
with h where h is shifted by an amount tau and we were considering this for different possible
values of all possible different values of shift. So, it is like how one function is passing through

the other function in time continuum, right, and leaving out its effect, okay.

So, I mean if you can study about convolution integral and stuff in any good book on basic controls
signals and systems and stuff, right. So, we are not continuing on that here. But just to tell you that
this is the property of LTI systems only here.



(Refer Slide Time: 20:03)

LTI State Space Model

If the system is Linear Time-Invariant (LT1), the equations simplify to

Definition (Continuous-time State-Soace Model
(e
x(t) = Ax(t) + Bu(t)
dt

y(t) =Cx(t) + Du(t)

efinition (Discrete-time State-Spa
x(k 4 1) = Ax(k) 4 Bu(k)
y(k) = Cx(k) + Du(k)

In the above formulas, A € R™™ B € R™1 C € R™ DER, and n Is the dimension of the sIQI of a
single Input single output (S150) system >
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Now for LTI systems if we create the state space model what we will have is like | said that the A,
B, C, Ds are fixed right, they are not a function of time. So just going back on our earlier discussion
on LTI system which we said that when it is time invariant and when it is time variant and we also
said that well it is time variant, then it is also a non-autonomous system. So here we say that well,

this is a non-autonomous system because with time the definition of the system is also changing.

And here | mean because time is an independent variable that is here, so you can see that here we
have this form where the definition of the system is changing with time right. So here if we try to
think of A, what is A? A is basically the time the time variable T itself right in an identity matrix
times time in that format right so that is why this was a non LTI system. So, coming to this when
the system is time invariant then it will be written in the state space form in continuous time like
this.

So, you can see that the function of time has vanished for A, B, C and D and again in the difference
equation for the discrete time state phase it will be written like this right. So here if you have an n
dimensional system, n is the dimension of the state vector so Aisncrossn,Bisncross1, Cis1
cross n, right, because you have to match the dimensions with the vector x, right. And D is again
depending on this control if the control is having a multi-dimensional control inputs then

accordingly D has to be matched into that, okay.



And if it is single input single output then as you can understand that well, I mean, u is a single
output system so in that case D would be a scalar, right. But in general if it is in a matrix format

then well it’s not so. D can have my multiple more than I mean one dimension here.

(Refer Slide Time: 22:13)

Advantages of State Space Representation

» Systematic analysis and synthests of higher order systems without truncation of system dynamics

* Convenient tool for MIMO systems

 Uniform platform for representing time-nvariant systems, time-varying systems, inear systems as wel as
nonlinear systems

* (an describe the dynamics in almost all systems (mechanical systems, electrical systems, biological systems,
economic systems, soclal systems et

Note: Transler function representations are valld for only for finear ime invarlant {LT) systems

So this state space representation provides you with a systematic method for analyzing high order
systems. And specifically for MIMO systems this would be very advantageous and we will do all
our analysis considering the state space form only. And it is able to describe dynamics for most
class of systems in general, mechanical, electrical, biological systems etc. And of course, you know
that the other popular method so, and also in state space system you can capture a time invariant,

time varying systems, linear systems, all of them, right.

I mean it is a uniform platform you can represent time invariant systems, time varying systems.
You can also represent linear systems specifically in this format when you have A, B, C, D. But
of course, when you have non-linear systems well something else some other factors will also
come in right but the state space model is very generic here. And the other popular control system
modeling that we know which is the of transfer function-based systems, they are only valid for
LTI systems that is the linear time management class. So in general because of the conveniences
associated with state space we will be continuing to use this state space representation only.
(Refer Slide Time: 23:36)



Time Response Analysis. Introduction

+ ffor 3 specific input the output of a control system varies with respect to time, then it is called the time
response of the control system,
* Time response nalysis means subjecting the control system o nputs that are function of time and thek
Outputs which are also function of time,
* s possible to compute the time response of a system If the nature of input and the mathematical madel of
the system are known
* The time respanse of a control system consists of two parts;
|, Transient response
1, Steady state response

Now the next thing that we will be talking about is analysis of time response right. So let us
understand what it means? So like there is some well-known control inputs with respect to generic
system design theory and for such inputs how the system reacts and what is the output that we can
observe from them, we can actually kind of deduce the system characteristics, | mean, which is

basically a method of system identification.

So we will do this study of time response analysis which means subjecting the control system to
inputs that are functions of time and we will like to see that well how the outputs are changing
with respect to that. And in that way, we will see that well we will try to understand from this
response that how the system is really what can be an underlying mathematical model of the

system.

And to go deeper into that, we will first understand this classification that at any time response of
such a control system will have 2 parts. One is the transient response right, another is that steady
state response. So let us understand what it means.
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Time Response Analysis

Mathematically, from the figure the time response c(t) can be represented as

c(t) = ces(t) + css(t)
Where,
* C, (t) = the transient response
* ¢, (1) 2 the steady state response

0. o

Transient  Steady
State state

Response of control system in time domain

So mathematically if you write systems response as some functions c(t). So t is the time there are
2 parts one is the transient and other is the steady state response. so steady state response means
with time leading to infinity what is I mean what is | mean what eventually the response becomes.
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Time Response Analysis

Iransient Response
The time required to achieve the final value is called transient period. The transient response is represented as the
part of the time response which goes from the initial state to the final state and reduces to zero as time becomes
very large.
Mathematically, It can be defined as,

fim ¢, =0

e

steady state Response
The steady-state response is defined as the behavior of the system or the part of the total response as t approaches
Infinity after the transients have died out

Example
Let us assume the time response of a control system; ¢(t) » ** fere, the second term 10e”
g0es 10 infinity. Hence, this is the transient term. And, the Tirst term 1'vemains constant ast appr
this s the steady state term,

2010 a8 t
“Wity. So,

|
So the part of this response. So if | am able to write this response as a mathematical function of

time. Like | said that there are 2 parts. Which is a transient and the steady state. The part that

eventually dies out is the transient response. That means it is the part which happens initially in



the system and eventually it will reduce to 0. So as t tends to infinity, this will die down. And the

steady state response is the part that remains with this t term tending to infinity.

For example, let us say you have a control system whose output is defined like this.

c(t) =1+ 10e72t
Now if you see this second term is going to die down with t tending to infinity so this is the transient
part and this is what will remain. So that is the, so with t tending to infinity you will have the
systems response approaching one and that would be the steady state response.
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Standard Test Signals

v The characteristcs of actualinput signals are a sudden shack, a sucden change, a constant velocity,
anda constant acceleration,

v Therefore, the dynamic behavior of a system s judged and compared under application o standard
test signals an impulse, a step, a constant velocity, and a constant cceleration.

v The other important standard sgnal inthe area of controlsystem s  sinusoidal ignal

Now like I have been saying that for system identification purpose there exists some standard test
signals, right. And with respect to which we judge | mean we know that well from our basic
underlying mathematics that given these standard state signals like the impulse response, impulse
input, step input or a constant. | mean, this kind of inputs, | mean if we can observe the system's
output and if we can analyze the output function, we are able to kind of infer certain properties of

the system.

So, with respect to those we will like to give certain we would like to study this thing that how to
identify certain system properties with respect to this kind of standard test signals. For example, if
| take an actual system like a vehicle for it a constant velocity or certain acceleration this can be

standard test signals. But in general when we speak in terms of state variables, there this impulse



they are the step these are the are the standard | mean standard variables. And if we interpret them
for let us say in an automotive case, they would be in terms of velocity or acceleration.
(Refer Slide Time: 27:44)

Standard Test Signals
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mpulse signa
* Theimpulse signal represents the sudden shock
characteristics of actual input signal.
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+ IfA=1, theimpulse signal is called unit impulse signal.

Step signal
* The step signal represents the sudden change

characteristics of actual input signal. a
A t20 »
ue)= Io, t<0 ,

* IfA=1, the step signal is called unit step signal,

of
.
o

So let us see here when we talk about standard test signals. So we know that one of them is the
impulse signal. So it is a signal that is defined. So let us say you have a signal which has amplitude
A at time equal to 0 and before and after that there is no value. So that is an impulse with an equal
to 1 you have an unit impulse. Similarly you can have a unit step or an S step. So a step signal is

like this so it has an amplitude A from time equal to O plus.

And if A is 1 then what you have is a unit step. So these are some examples and for that if I just
interpret them with respect to a vehicle model you are talking about constant velocity constant
acceleration this kind of signals. And similarly just like unit step and unit impulse, you can have a
ram signal right. So if you can have a ramp like this right. And also you can have a parabolic
signal, so it will have this form, At square by 2, so if that represents a parabola from the origin
right. So similarly, you can have a unit ramp or a unit parabola based on selection of the amplitude
A of the signal.

(Refer Slide Time: 29:00)



Relation between standard Test Signals
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Now there is a nice set of inter relations between these test signals so if you keep on integrating
then from impulse you get step, from step you get ramp, and from ramp you get parabola. And the
differentiations from parabola will give you the ramp, the step, and the unit impulse signal.
(Refer Slide Time: 29:22)

Laplace Transform of Test Signals
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Now assuming that we all have some basic knowledge in Laplace transforms these are the well-
known transforms that we have. So unit impulse will give you one. And otherwise you get the
amplitude for step you have this nice form, A by s. Ramp is A by s square and for parabola you
have A by s cube, right.
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Transfer Function

The input- output relationship in a linear time invariant system is generally represented by the transfer
function, For a time Invarlant system, it is defined as the ratio of Laplace transform of the output to the
Laplace transform of the input.

Let us consider the following block diagram is representing a feedback control system

EiS)
RS

— ()

In the diagram, B(S ) = feedback signal, C(S) = output, R(S) = Input function, G(S) - open) G
H(S) < feedback loop gain of the system.

And so what we are doing is we are trying to now see that we are working under the LTI
assumption. And we are now looking at these different this control diagram in the form of this
transfer, in this transfer function in the Laplace domain view, okay. So you have this input output
relationship in a linear time variant system and it is represented by this transfer function. And for
a time invariant system as we know, it is the ratio of the Laplace transform of the output to the
Laplace transform of the input which is the transfer function. And from that we have this general
block diagram representation. So maybe with this we will end the current lecture and we will again

resume from this point. Thank you.



