
Foundation of Cyber Physical Systems

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

 Lecture - 14

Real Time Task Scheduling for CPS (Continued)

Hello and welcome back to this lecture series on Foundations of Cyber Physical Systems. So,

we will just start right over from where we left off. So, in the last lecture we have been

discussing about this EDF algorithm and we showed that well it is optimal among all such

dynamic priority algorithms. However, we also said that well some of these algorithms do not,

these algorithms that we have discussed till now, they do not support this kind of precedence

relations among tasks.

So, let us see what kind of algorithms can be used to actually execute tasks which have this

kind of precedence constraints and we will start with one which is known as Latest Deadline

First or LDF.

(Refer Slide Time: 01:14)

So, if we can just look at these slides, LDF is an algorithm which is optimal with respect to

precedence relations. And what essentially it does is you are given a task graph, a task graph is

kind of where you have the nodes as the tasks and the edges, forward going edges, they are

actually capturing the precedence constraints that which trust must execute and after that which

does can execute something like that.

So, an LDF algorithm will analyze such a graph and it will construct the schedule backward. It

will to first choose the last tasks, the tasks that are the leaf nodes of such a tree. We will see

that. And the reason why it is done like that is that the last task does not really have any anybody

dependent on it. So, let us say you have a task graph like this that only after what this graph

says is only after T1 executes, I can execute T2 and T3.

And T2 and T3 do not have any dependency and let us say after both T2 and T3 executes, I can

execute T4. So, these kind of constraints are taken as input by this LDF algorithm. And it will

construct the schedule backwards, which again means that it will first try to compute what

should be the start time of this task T4. It does not have any anybody who is going to depend

on T4, right.

So, it will just figure out the start time of the independent task which is right at the leaf node

or the end. And then it will construct backward. It will analyze tasks which are kind of

predecessors of T4 like T2 and T3 and then it will again analyze and figure out what should be

the start time of task which is the precedence, which is the predecessor of T2 and T3. So, that

is how it works.

Now in this variant, we are not supporting arrival of tasks and we will soon see that will how

that support can also be brought in.

(Refer Slide Time: 03:21)

So, when we modify LDF with this support for arrival of tasks, that is what we call as EDF

with precedences or EDF*. So, this is the algorithm which handles precedences, arrival of tasks

and minimizes the maximum lateness. So, that means at any point of time, given a set of tasks,

including the ones which have arrived, you figure out which task to execute, okay, and again

you recompute that upon arrival of new tasks to your task set, so that is how it works.

So, what it does is it will recompute the relative deadline of the tasks. So, you have a set of

tasks which are pending to execute and some of them have arrived now some of them may have

arrived a bit earlier. So, what you are doing is you are recomputing the deadlines of the tasks

with respect to their precedence constraints. So, suppose right now your set of tasks is T, so for

a task to execute, let us say task i will execute, okay.

Let di be the set of task executions that immediately depend on i in the precedence graph. So,

that means once task i executes di of these tasks can execute, okay. So, what we are saying is

we will recompute the deadline. That means whatever is given to you let us say that well this

task must execute inside this time, is not really the true deadline. Because, if I just schedule the

task based on it is deadline, any task which is going to depend on this task, it can only execute

once, this guy has finished, right. And that may be quite late for those dependent tasks to satisfy

their own absolute deadlines, we will see what it means. First, let us just look at this symbolic

equation and in with soon with an example we will see that will how such a symbolic relation

can be computed. So, what we are saying is suppose let us say this is your task i and di is

containing 2 tasks j and k, right.

And you have somehow computed that exactly when j and k must start, right. And we want to

see that well what should be the modified deadline of the task i or what do I mean is i have

already computed these modified deadlines of j and k, okay. So, that is more like a relation

here we are we are trying to develop between these modified deadlines of i, j and k suppose,

these are known, right.

So, with respect to these modified deadlines, that means the deadlines inside which j really

must execute. So, dj let us say is the original deadline of task j, but we are saying that this

modified deadline is indicating the time inside which j must really execute, so that anything

downstream after j which depends on j will have enough time to execute and satisfy their own

deadline.

So, suppose these downstream activities we have already figured. Let us assume that. So, now

with that being figured out this modified deadline for j is dj
’, similarly for k is dk

’. And we want

to compute this d. That when really, I must finish it is execution. So, the way to do it is well, if

this is its real deadline then it must start at some time which is dj
’ – ej and similarly dk

’ – ek,

right.

So, among these two values, which one is the minimum, that we will figure out, okay. Because,

if we can figure out that, that among these two values which one, I mean, among these two

values this deadline minus execution time, if we can figure that thing out. That tells me that

well, that much time must be, I mean, with respect to dj
’, I can leave out ej and I can say that

that is the deadline of i or with respect to dk
’, I can leave out an ek amount of time.

And I can see that well the rest of whatever remains that is the real deadline of I, okay. So, I

compute those differences and see who among them is minimum, right. So, whichever is

smaller is going to be now compared with the real deadline of this ith task. That is another

minimization. And that will tell me that well that is when this ith task must finish it is execution,

because after that, let us say it happens to be the case that dk
’ is smaller, I mean, dk

’ – ek is

smaller, that means and let us say that value is even smaller than di.

That means for di
’ = dk

’ – ek. So, let us say at this point this ith task will actually finish. That

means I am just leaving enough time to finish dk inside it is deadline dk
’, got it. So, that is how

we compute these modified deadlines and we do it from the leaf nodes of the tree backward in

this precedence graph, okay. So, essentially once these deadlines are computed, the rest of it is

just EDF.

So, what we are doing is we are revaluating the deadlines by satisfying the precedence

constraints of the graph. And then based on the deadlines whichever is earlier, we will dispatch

to the processor and that is how we will work it out here.

(Refer Slide Time: 09:13)

So, if you see here, we have taken one example. So, you have this values that are given, okay.

So, you have a precedence constraint graph. So, d1 is some 2, d2 for this one is 5. This is also

the example has been taken from the same book that we have been talking about in this course.

That is a kind of a reference test do at least up to this much of coverage we have done. And d3

the deadline for node 3 is 4, similarly deadline for node 6 is 6.

I mean, suppose these are given, but mind that these are the actual deadlines. So, if we just now

try and work out the relative deadlines backward. So, these are the leaf nodes here, so their

deadlines will remain same. So, d4 will be 3, d5 will be 5, d6 will be 6, no problem with that,

okay. What about d2 and d3. Let us figure that out. So, let us pick up this d2 here, I mean and

try to see what should be it is modified value.

So, if we apply. We’ll just apply this relation, just note it once again. So, for 2, we have two

successors, 4 and 5, right. So, you are going to compare here with d2, and then you are going

to do a min(𝑑4
′ − 𝑒4, 𝑑5

′ − 𝑒5), that is it right. And d4
’ = d4 = 3, d5

’ = d5 = 5. So, d2 is 5. So that

makes this one to be 2. And similarly, if we just do this for d3
’, value of d3 is 4. It has got only

one successor which is d6, right.

So, that means you do not need these minima here. This is just a 6, d6 – e6. By the way, all the

executions times here e, those values are 1, so that will come out as 4. So, then this 6 will get

to be 4, okay. So, now you have this set will deadlines d1 and d2 both as 2. And so not d6, this

is d3
’ which remains to be 4. So that is there is no much change here because also anyway it

does not hurt because d6 is 6, so there is quite lot of time, 6 – 1, 5.

So, whatever was it, I mean, that remains but here you can see this guy, the deadline has

changed significantly. One can even say that this example is kind of built to highlight this issue

because somehow, we have kept this high. And kept the deadline of the latter nodes to be

smaller at least this one. The idea is we are trying to show that how this guy is forcing the actual

runtime deadline of these two change, okay.

So, even in your precedence constraint graph if there is some issue like some intermediate node

has a higher deadline, it will automatically get pushed to the left by nodes later on, if they have

a smaller deadline. So, that that is kind of what we are trying to show here. And then, if you

just apply this EDF* or LDF, in this case is only for a single graph no new task is arriving, so,

LDF and EDF* are same.

So, which tasks are really going to execute? so task 1 will definitely execute, right. I mean,

then after this task 1, of course when a task executes it is precedence order has to be satisfied

by the schedule, right. So, 1 executes and after that 2 and 3 both of them are free to execute.

Now, if I have taken this LDF, what do I have? I mean, if I have taken LDF or EDF*, what is

happening is this d2’s recomputed deadline is 2 and d3’s recomputed deadline is 4.

So, it will schedule d2, right. So that is why you see of course LDF and EDF* like I said has to

be same, so it is it takes the second task. And after the second task which task to take? Well,

now you see, once the second task is taken out of the equation, once the second task is taken

out of the, this is done, this is done. Now once this is done, you have a set of 3 possible tasks

to execute. So, this is like your scheduling frontier now. This is done, so these two tasks are

free.

And the initial node is done, so this task is also free, right. And among them you have deadlines

like 3, and this is 5, and this is 4. So, which one you execute? So, you will execute like 4 here.

So, because that is the deadline 3, so you execute the node 4. Node 4 as deadline 3, node 5

deadline 5, node 3 deadline 4. So, smallest deadline value is 3 for node 4. So that is what will

come, so once this is done you have now 5 and 3 node numbers with relative with deadlines 5

and for 3 it is 4, right. So, 3 will come, right.

So, once this is done and now you are scheduling frontier will also include this guy. But then

again if node 5 has deadline 5 and 6 has deadline 6. So, 5 will go and then 6 will come. Had

this been EDF, had there been would there have been any change? Yes of course. So, what

would have happened is if it is EDF none of this re-computation would have ever happened,

right. So, it would have taken d1, right. Precedence constraints will force that well one has to

be executed.

Then, after that these two guys are free. No re-computation of deadline. So, this is 4, and this

is 5. So, node 3 will go in instead of node 2 and then, well, after that you have so node 3 has

gone in and then you will have node 2, right. So, and after node 2, you would have executed 4

because I mean, after this you would have executed node 2, you would have executed 4, then

5 and 6, okay. So that is how EDF would have done it

So, that is about executing and you know, I mean, executing schedule, I mean, tasks with

precedences in a deadline efficient manner. Now, we have discussed Rate Monotonic. We have

discussed this new algorithm, that is EDF*. And just for you to study, there is another algorithm

called Deadline Monotonic algorithm. So, you can just take this as a take home exercise and

start and study about this.

We will also try to give you some problems around all these algorithms when we do the

tutorials. So, that is about some real time scheduling algorithms. And the next thing that we

will be discussing now is some amount of timing analysis of such multitask scheduling on

processors. So, we are calling this topic as processor-level worst-case response time analysis.

(Refer Slide Time: 18:40)

Now, let us try to understand what is response time. I think we already have defined this. Like

you have a task that has been released and then that does not mean that well the task will be

executed immediately, right. And the task will eventually get executed it may get preempted

and this can keep on happening, right. And eventually when the task finishes, so you have this

interval when the task started and when the task finished, right.

And when the task was released and when the task is finished and this is what we call as a

response of the task. So, typically for a periodic task we will be representing them using this

kind of a 3 tuple for task Ti. The tuple will contain period pi, deadline Di and the execution time

ei, right. Now, the tasks can have a unique fixed priority, okay. You can have a Deadline

Monotonic scheme or a Rate Monotonic scheme or any other scheme like that.

All tasks are preemptive and for each task we are assuming that the deadline is less than or

equal to the period. So, there is a catch here. So, if we do not mention the deadline, you can

assume that deadline is equal to period. But we can mention the deadline. Of course, the

deadline has to be less than or equal to the period in that case, okay. So, when I am talking

about fixed priority algorithms, the priority may be decided by the rate or the period, or the

priority may be decided by the deadline. That is another variant.

Now, suppose we want to figure out what is the Response Time of the task? Response Time

we have just defined, right. Now, why do I want to figure out what is the response time?

Because for a real time task, we require that the response time must be less than the deadline.

So, when a task’s period starts, we know that well unless there is any offset or something

specified, that is the point where that task instance has been arrived, has been injected into the

system or the task instances arrived into the system.

And from that point up to the point where the task finish, this is what we call the Response

Time and in a hard real time system we want the task to finish before it is deadline, right. So,

this is a constraint which is important, ∀𝑖 𝑅𝑖 ≤ 𝐷𝑖.

(Refer Slide Time: 21:09)

So, we will like to know how to compute this quantity Ri? Now, if you are given a fixed priority

preemptive scheduling scheme for a given task set, the response time for the ith task is typically

given by this kind of an equation. So, for the ith task,

𝑅𝑖 = 𝑒𝑖 + ∑ ⌈
𝑅𝑖

𝑝𝑗
⌉

∀𝑗𝜖ℎ𝑝(𝑖)

𝑒𝑗

 and you are carrying out this summation over all tasks who have a higher priority than this ith

task, okay.

So, for all those tasks what you are doing is you are having that response time of i divided by

this period. So, you see that for all task we have assumed this tuple. So, p is the period, so for

all those high priority tasks for the corresponding, let us say you have picked up some j value

what is the period of that task you divide it, right and then you multiply this by the execution

time. So, let us understand philosophically what is happening.

So, I am saying that well right now let us say I have an approximate value that well the response

time of this ith task is this. So that is one interval, right. So, inside this interval how many

instances of the jth task can occur? So that can be figured out by dividing this Ri by this inter,

by the period of the jth task pj, right. And this is your Ri, this this interval is, this is Ri, okay.

Now so I get that many task instances. Now as I have said, I have taken the summation only

over task which have got higher priority than the ith task.

So, it is expected that all those instances of the jth task will come and they will preempt the ith

task and they will consume the CPU in for each instance for this ej amount of time. So, inside

this response time i will be interrupted this, Ri/pj number of times, and each interruption will

be of an interval of size ej, right. So those times my task maybe it was trying to execute that, Ti

was trying to execute, but that high priority task j is coming. It is interrupting me and it is

consuming the CPU.

So, I am just figuring out how much interference I have from this jth task. I think now it will

be a bit clear. And similarly, I can figure out the interference on me, the ith task caused by all

such other j values of tasks which are of higher priority than me. Because, all of them are going

to interrupt me. All of them are going to interrupt me for their execution time, and that

phenomenon is going to happen that many times that they come inside this response time, okay.

Now the question is well, this response time value is not known, right. So, if you see this is like

a recurrence equation, what we are doing is we are getting an estimate and we are refining that

estimate by applying this equation, okay. So, that is why let us say my nth estimate is given by

𝑅𝑖
𝑛, I apply this equation to get the (n + 1)th estimate,

𝑅𝑖
𝑛+1 = 𝑒𝑖 + ∑ ⌈

𝑅𝑖
𝑛

𝑝𝑗
⌉

∀𝑗𝜖ℎ𝑝(𝑖)

𝑒𝑗

okay. So, initially we will assume that this value is 0. So initially I will only have e i as my

initial estimate of my response time.

And then we will compute this recurrence and we will keep on computing it, until unless I get

two consecutive iterations of this recurrence giving me the same value. So, that means this

computation has reached a fixed point and that is my response time value. Now notice this

symbol here, so that is like the ceiling symbol because this ratio may be fractional. In case of

fractional I will just try to round it up to the next whole number and that is why we take the

ceiling here.

(Refer Slide Time: 25:15)

So, let us let us take a simple example here of response time analysis. So let us say I have CPU,

an electronic control unit in a vehicle which has got some tasks this T1, T2 and T3. So, these are

not messages, these are, let us say periodic real time tasks. And they have the periods and

deadlines and execution times as mentioned. Let there be, I mean, tasks have different types

one is the security monitoring task.

That means it will execute once every 30 millisecond and it will try to finish it is execution

inside 15 millisecond. And each time it executes it will consume 5 millisecond of the CPU and

it is monitoring what activities are going on where, whether some values or is monitoring are

wrong and then it will raise an alarm something like that. It has got a priority 2, and then there

is a sensing task which is also running periodically.

There is a control task which is running periodically and the sensing task has the highest

priority. Let us just consider this as a very symbolic example, okay. So, these are fixed priority

scheduling we are considering. So, note that, because that, their priorities are I mean with

respect to the periods here. Now note that the control task has the same deadline as it is

periodicity, this one, okay.

Now we need to check whether for this control task the deadline, I mean, is greater than or

equal to the Response Time value.

(Refer Slide Time: 27:00)

So, if you just look into this calculation, so just like we said, the initial estimate is 0. Now you

apply this equation once, okay. So, we are computing it for the control task. So, that means this

has a priority 3, so it can be interrupted by which tasks? It can be interrupted by this sensing

task and the security task, right. So, if you see here. So, our target is to compute for this control

task, right. But let us start with this one first. We are trying to see for this security task, okay.

So R1.

Now, R1 has priority 2. So, the only one of higher priority than that is T2, okay. So, it can be

interfered with by this T2. So, when I factor in, I will just factor in the execution, let us say this

is the response time estimate I will of R1. I will divide it by the period of T2 and I will multiply

this number of instances with execution of it T2 that is e2, right. So, initially this is 0, so all I

get is e1 that is 5 and then I will refine it to 13, and then I will soon see that well it is stabilizing

at 13 or not changing. So, for T1 it is getting satisfied.

(Refer Slide Time: 28:38)

Now, let us see for so this is for T1. Now let us see for the sensing task is the highest priority,

so there is absolutely no interference. So, this kind of ceiling-based terms will never come. So,

it is all about the execution time only. So, it is just a I mean response time is exactly equal to it

is execution time whenever it comes it gets the CPU this fixed priority scheduling. So, there is

no issue at all. Period, I mean, deadline is 12 sorry.

Here this should be 12, not 20, and 8 is always, I mean, this execution time that which is equal

to the response time is always less than the deadline here no problem at all with that.

(Refer Slide Time: 29:30)

Now what about T3, right? With periodical deadline is about 30 and we want the response time

to be less than that. So, let us see. So, for T3, if we just try to compute that value. So, the 0th

estimate is of course, I mean, we can either write this or we can just do the other that means

interference of the second task, interference of the first task, but of course I have taken this to

be 0.

So, this is coming just is e3, or you can simply take 𝑅3
1 as e3. You can just start writing from

there. So, that is not a problem. So, this is actually 12 and then what about the second, the

refining the estimate. You can just write the equation. So, this is 8. This will come as let us see.

So, this is 5 and similarly you can get this as 8 and you will get this as 25. So you can now start

with 25.

(Refer Slide Time: 31:35)

So, again you have 12. So, these are ceiling relations. So, you get 2 and here you get a 5. So

that is 33, okay. And if you keep on doing this, you can go to the fourth estimate, which should

again be 12 plus you can see this is 33, right. So, the previous estimate is 33. If you keep on

doing this, so this is again going to give you, I mean, it is rounded up to the next whole number

so that is 2 and 16. This is again rounded up to the next number, right.

So, you get 38 and then you can just check that if you get the 5th estimate. I am just trying to

show you that this really is going to terminate. So, you see it has because, again you are you

are getting the same values because it is 10 and this 38 which is equal to your previous estimate,

so you can now stop. So, what you get now is the response time for task 3 and that comes to

be 38 which if you compare with the deadline is kind of is going to overshoot the deadline,

right.

So, that is a bad thing so if we are doing this kind of Rate Monotonic scheduling and if you do

the response time analysis this is clearly violating the deadline. So, that is it, that is how we go

about doing processor scheduling and, I mean, computing response time response time for task

sets with fixed priority. So, with this we will end today's lecture. Thank you for your attention.

