
Foundation of Cyber Physical Systems

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

 Lecture - 13

Real Time Task Scheduling for CPS (Continued)

Welcome back to this course on foundations of Cyber Physical Systems. So, in the last lecture, we

started with this proof on whether these non-EDD schedules are optimal or EDD schedules are

better. So, let us move ahead from that point.

(Refer Slide Time: 00:47)

So, I think we have been discussing this. So, we had these two options of a two-task system. We

have an EDD schedule and we have this non-EDD schedule here, right. So, if you look at the non-

EDD schedule, we have a task which has this deadline, in this case you have this task which has a

deadline that is later on, right. This task i which has a deadline later on, it is executing first. But in

this case, a task which has a deadline which is earlier is executing first, right.

So, this is the basic difference between these two tasks here. So, in one case we saw that well this

is our max lateness equation. In the other case we have this, well the max lateness is given by these

two these two differences, right. It is either this or this and we made one observation, that well, fi
’

is nothing but this is equal to fj, right. Because that is the point when both tasks finish. So, fj must

be equal to fi
’, right.

So, please ignore this part here and we will see that well, what really is the case? Can I show that

in both, I mean, the EDD schedule will give me max lateness value that is smaller than the non-

EDD schedule? If we can prove that we are done, we have shown that we have at least in the two-

task system, whatever is the EDD schedule, that is actually minimizing the max lateness. So, let

us move ahead. So, what we really have here is this situation, right.

I mean, fi
’ - di and fj

’ – dj. So, let us see in, let us do a case analysis that suppose this is the resulting

max or I mean in both cases what really happens? Is this situation better than this situation with

respect to the lateness? That is how we will do a case analysis. And why we have to do the case

analysis? Let us understand. I will just repeat this that these two intervals it is not that they are

contained inside each other something like that, right.

So, this is all symbolic. So, we need to see in both cases what is happening. So, let us go forward

and analyse this, both of these situations.

(Refer Slide Time: 03:31)

So, there will be a case on, where we will be considering that well, this fi
’ - di is the maximum. So,

let us see that situation, that fi
’ - di, let us say that is the bigger one, right. Now observe one thing

like we said earlier that fi
’ is fj, right. So, and of course we know that d j here is smaller than d i.

That has been our initial task setting, right. So, if we have fi
’ = fj and dj < di, we have 𝑓𝑖

′ − 𝑑𝑖 ≤ 𝑓𝑗 .

I mean that that is basically the same value. But earlier we were subtracting d i and now we are

subtracting a smaller value, okay. So, if I just subtract a smaller value here, right, then this is

bigger, right. So, I have fj – dj to be larger than fi
’ – di. So, I will just repeat what we are doing is

this is the max lateness, fi
’ – di, right. Now what we are saying is let us remove fi

’ with fj, and let

us see what happens. I mean, now instead of subtracting di, if I subtract dj, right.

So, if instead of subtracting di as we, so essentially if I look at this figure. So, again this is same as

fj, right. They are both same. Instead of subtracting this if I subtract this, right. So, I have a smaller

magnitude, right. But so, this is a smaller magnitude. So, if this is fj - dj, right, and this is a smaller

magnitude but it is a negative. So, what I will have is a negative smaller magnitude is going to be

larger than this one, right. So, in that way in this case I have this and if you observe what is fj – dj?

If you just turn over to my previous slide and that exactly is L max. That means for the EDD

schedule, the non-EDD schedule, what is maximum lateness, right? So, I can write this 𝐿𝑚𝑎𝑥
′ ≤

𝐿𝑚𝑎𝑥. So, in case, in this maximum lateness the first, the first argument is really the max, which is

case one. We have shown the maximum lateness here is smaller for the EDD. Now take the other

argument, which is fj
’ – dj, right.

So, if you take that one, then this is your maximum lateness 𝐿𝑚𝑎𝑥
′ , right. Now we know for one

thing that well, 𝑓𝑗
′ ≤ 𝑓𝑗, right because fj

’ is here and fj is here. So, I can always write, just replace

fj
’ with fj. So, then if I consider this interval fj – dj, right. So, this again is the smaller interval

smaller in magnitude. That means I can just say that well 𝑓𝑗 − 𝑑𝑗 ≥ 𝐿𝑚𝑎𝑥
′ .

Because it is negative with a larger value with respect to that something negative with a smaller

value will be larger than this, right. So, and this is again Lmax, right. So, in this case again I can

argue that 𝐿𝑚𝑎𝑥
′ ≤ 𝐿𝑚𝑎𝑥. So, in effect using both the cases, what we are able to show is that this

𝐿𝑚𝑎𝑥
′ which is the maximum lateness is smaller than the Lmax which is the maximum lateness for

non- EDD, right. So, this is it, right.

So, when I am doing, when I am following EDD, I am minimizing the maximum lateness for the

tools task system. In general, is a difficult proof but we can definitely show that for any number

of tasks this argument will hold, right. So, this is the statement that we can make that schedule two

has maximum lateness which is no greater than that of schedule one. So, we I mean that is that has

been our entire hypothesis.

So, we can say that EDD schedule, that is the schedule 2, it has minimum value of maximum

lateness of all schedules, because of all schedules, because in a two-task system you just have two

possibilities. So, this is a simple proof but as you can see that there are some cases and arguments

to be made here. But we are able to show that why EDD works.

(Refer Slide Time: 08:55)

And in general, when you want to put EDD in practice you need to support arrival of tasks, right.

Because the idea of EDD is that well you are given a static task set. So, if you extend this with

arrival of tasks, then we have this algorithm for of Earliest Deadline First execution, the EDF

algorithm. So, EDF is an algorithm or Horn’s algorithm, it supports arrival of task and the, I mean,

better to say periodic arrival of tasks, okay.

So, if I am given a finite set of non-repeating tasks with associated deadlines and some an arbitrary

arrival times. So, observe this the arrival time here would mean the initial offsets of the tasks,

okay. I mean, an arbitrary and any algorithm that at any instant executes the task with earliest

deadline among all the arrived tasks is optimal with respect to minimizing the maximum lateness.

So, this is what we have shown for the small example.

And we are saying that well this is true in general. You are given this task set and you are told that

well for this task set you have this these are the current deadlines, right. And the tasks can arrive

at any point, okay. And among all the different scheduling algorithms which you can use to order

the execution of the tasks, that algorithm which uses the notion of earliest deadline for deriving

the ordering of the tasks is the one which is optimal in minimizing the maximum lateness.

So, that is what we are arguing. Now if we can apply this hypothesis time and again. So, suppose

now one new task instance arrives. So, your set of arrive tasks has changed, right. So, for this set

of tasks you calculate that what are the deadlines, okay. And the one which has the earliest deadline

you start executing it, okay. So, that is how EDF will work you have a set of task instances that

are there in your queue. For them you check, you have checked that which one has the earliest

impending deadline, right, I mean, and you execute that.

And in while doing this well another task may be added to the system and if that task has even

earliest deadline, you will re-evaluate. That is why EDF is also pre-emptive, right. So, suppose

while executing some task which was earlier having the earliest deadline, a new task has arrived

your arrived set has changed, right. So, look at this argument. Here we are not talking about

repetition.

We are looking at it for a single instance. We are saying that at this instance you have a set of non-

repeating tasks and associated deadlines and arrival times. And you are saying that well among

them whichever one has the earliest deadline you execute it. Now extend this argument to the

periodic case. So, a new task will arrive. Whenever the new task arrives, it is almost I mean just

look at it again that you have you have this same non-repeating task set, but it has extended with

this new instance of arrival of some task, okay.

And then again you apply the algorithm. That means you see that among these pending task

instances of different task types which one has the earliest deadline. If this one is something that

is pending with respect to something that was executing, you preempt it and again execute. So,

that is how EDF will really work. And it can be shown that among all such algorithms which are

the, so now what is happening.

Whichever task has priority to be high or low, that is changing based on the instance of the task.

Some instances may have lower priority but depending on arrival times depending on other tasks

depending on how much time this task is waiting, some instances can have a lower priority or a

higher priority, right. So, these are dynamic priority algorithm.

(Refer Slide Time: 12:56)

So, let us take one small example here. So, let us look at this task set. You have three task T1, T2,

T3, and you have their periods 4, 6 and 8 let us say in milliseconds, and executions time 1, 2 and

3. So, if you calculate their execution time, I mean, given this periods and utilization time, let us

do their utilization check. That suppose I am trying to first see well you are these tasks together

RM schedulable? Can I execute the RM algorithm on these tasks on this periodically repeating

tasks, and still get a valid schedule.

But you already have that utilization constant. You know that with RM, if I have a three-task

system, my maximum utilization that the RM algorithm will provide me is this. So, what is this?

If you remember that formula for RM for computing this upper bound on the maximum utilization

that an RM algorithm can give, 𝜇𝑚𝑎𝑥 = 𝑛(2
1

𝑛 − 1). So, just put n = 3, it gives you this 0.7798

something like that. So, that is the maximum utilization you can have for a task set of 3 periodic

tasks that RM can give you, right.

But in this case if I have to satisfy this task set with this execution times the utilization, I really

require is something like this. So, you see 1/4 + 2/6 + 3/8, it goes to something like this so, this is

6, 8 and 9. So that is it, right. So, this is the requirement of utilization for executing this task set.

And the maximum utilization for a set of three tasks that RM can support is this, right. So, the

requirement is much more than what can be supported by RM, right.

So, this might not be as per the math here it is not RM schedule. So, let us see that well its actually

so. So, I mean let us try to create an RM schedule here. So, I am just trying to roughly draw a

timeline here. So, if I follow Rate Monotonicity, T1 has the highest period, followed by T2 and

then T3. So, all I mean, there is no offset here. That means all the instances, the first instances of

all the tasks, we can assume that they have all arrived at, right at the point t = 0.

So, T1 being the task with highest priority we will execute here, T1’s first instance. And then T2

will execute, right. T2 will take two cycles. So, T2’s first instance. Then T3 which has an execution

requirement of three cycles, will start to execute. But you see, I mean, T3 is going to take three

cycles that means T3 is going to finish here. And then T1’s first instance is done but T1’s second

instance is due to arrive here, right, at this point.

At this point T1’s second instance comes and being of the highest priority. This is T3’s is first

instance and here you will have T1’s second instance coming and getting executed. So, once that

is done, T3’s first instance can resume. So, it will resume, but then again T2’s second instance will

arrive at this point and that has a higher priority than T3, right. So, here T3 is. In this case here,

T2’s second instance will start and it will take two cycles to execute and it will end here, right.

Now, so if you see T3’s first instance which was supposed to take three cycles has it completed?

Not really. Because here it consumed one cycle here it consumed the second cycle. So, here T3’s

first instance, if it gets one cycle free CPU it can execute. But the issue is this is deadline, right.

This is T3’s deadline. By this point we are we are considering period equal to deadline here and at

this point T3’s second instance has also arrived.

And T3 was this is first instance was supposed to be executed inside its period equal to deadline

equal to 8 millisecond. So, that is why, that is just to show, I mean with the example, that will RM

will not really work here, tasks will start missing their deadlines.

(Refer Slide Time: 19:08)

So, now we can just check well is EDF going to work? Let us try to construct this schedule again,

but now with respect to EDF. So, you have T1’s first instance starting and completing right there.

And now let us see, I mean, what is EDF doing. So, at any point whenever a task arrives it will see

which one is the earliest deadline and it will just execute it, right. So, all the first instances have

arrived at t = 0, and T1 as the earliest deadline so, that is now executed, right.

So, when is T1’s next instance going to come? So, here T1’s second instance is going to come, here

T1’s third instance is going to come. T2‘s second instance is going to come here. This is where T2’s

first instance has come. This is where T2’s third instance will come. T3’s first instance is also

coming here, and T3’s second instance is also coming at 8, okay, and that is how it is. So, if you

see here T1’s first instance is done and T2’s first instance is pending.

T3’s first instance is also pending and T2 has a earlier deadline with respect to T3. So, T2 can

execute for two cycles and it will get done here. And then now comes the thing. T3’s first instance

will now start. Because now nothing is pending, right. So, T3’s first instance starts. But then T1’s

second instance comes right here. Earlier in RM, T1’s second instance was preempting T3's first

instance. Will that happen now? Actually no.

Because you see, T3’s first instance that has deadline up to when? Of course, up to T3’s second

instance which is right here. And T1’s second instance has come. T1’s third instance, well that also

has a deadline which is right here, right. So, it is like a tie I mean none of them I mean I cannot

say here that T1 has a higher priority. So, in that case I will just choose that well whatever was

executing let it just execute. So, I will just let it consume this time scale and T3’s first instance will

just end.

So, as you can see T3 is second instance, I will just repeat was is going to come here at 8 and T1’s.

So, that is the deadline of this. T3’s current instance the deadline is this. And T1’s second instance

which came in between for it also that deadline is this. So, I am not preempting at all. So, this is a

key difference here with respect to EDF. So, nobody misses their deadline and T3’s first instance

gets executed.

Now after this well T1’s second instance was pending and T2’s second instance has also come at

this point. But T2’s third instance, and that is quite late here. But T1's second is this earlier deadline.

So, definitely T1’s second instance will get executed. And after that T2's second instance can just

start. Because right now, nothing was pending. Now at this point while T2’s second instance was

executing something at higher priority and something at lower priority both came, with respect to

RM.

But they are not really having a higher priority because for both of them the deadline is much later.

The actual deadlines, T1’s third instance is this, T1's fourth instance the deadline is here. And T3’s

second instance has come here and that deadline is also far away, right. So, now nobody will

preempt and T2’s second instance will also complete, right. And then after this well, you will

execute T1’s third instance. And then you will execute T3’s second instance.

And in this way this task set will I mean if you draw is further, I mean I do not think there is any

point in for me to continue this. So, if you just keep on drawing this further, you can see that well

for this task set at least things are nice and schedulable. And you can just schedule this task set

with EDF. Now the question is well how do I know that a given task set is, I mean, schedulable

with EDF.

(Refer Slide Time: 25:39)

Well for EDF you can actually achieve a utilization which is up to 1, unlike RM, for which the

achievable utilization is bounded like this. With EDF the upper bound is one.

(Refer Slide Time: 25:51)

So, if we just want to summarize this. It is a dynamic priority scheduling algorithm, that means the

priority assignment to task instances is a dynamic, say, for the same task different instances can

have different priorities. It is optimal with respect to feasibility among all dynamic priority

scheduler. So, just like for all fixed priority pre-emptive schedulers, RM was optimal with respect

to feasibility. EDF is optimal with respect to feasibility among all this dynamic priority schedulers.

Of course, the pre-emptives also. It minimizes the maximum lateness like we showed using that

example for the two-task system. And the good thing about EDF is, it results in fewer pre-

emption’s. If you remember our previous example, in many cases, where RM would have actually

a task arrival would have resulted in a pre-emption because of the fixed priority thing. But we

actually saw that well, although a task arrived but for the existing task which is executing due to

its pending deadline it had higher priorities.

And that is why there was no pre-emption. So, that is why we are saying that typically EDF will

result in fewer pre-emption’s which those efficient because more for a practical implementation

pre-emption’s lead to a context switch over it because the processor has to restore the state of some

system, some task stored the state of some executing task etc., etc. So, all that time is not lost. An

an EDF schedule which has less than 100 percent utilization, it can tolerate increase in execution

time or reduction in periods and still remain feasible. Because it has some slack. So, suddenly due

to some uncertainty the execution time increases or a period reduces, it can tolerate it better.

Because it can go up to 100 percent and if it is less than 100 percent it has got that slack available,

right. However, if you see all the algorithms we have discussed till now, none of them have taken

precedence relation among tasks into action into consideration.

And what we will do in the next little lecture is we will now bring in these precedence constraints,

and see that well with such precedence relations well how task scheduling can be done in a real

time system. Thank you.

