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Real Time Task Scheduling for CPS (Continued) 

 

Hello and welcome back to this lecture series on Foundations of Cyber Physical Systems. So, I 

believe in the last lecture we have been talking about Rate Monotonic Scheduling and we were 

analyzing this nice example here. 

(Refer Slide Time: 00:40) 

 

So, we were trying to show that well if you look at these task instances, like we have with two 

tasks 𝜏1 and 𝜏2. If we consider that the schedule is going to be non-preemptive, it will not be 

feasible because the tasks will start missing their deadlines and then we showed an example 

schedule where I am giving priority to this task 𝜏1 here. So, and when I am going to give priority 

to 𝜏1, we have a physical, feasible schedule.  

 



And in case we try the alternate option that is we start we try to give priority to the task 𝜏2. We 

also discuss that why it should not be feasible because in case I am giving higher priority to 𝜏2, 

𝜏1’s instances will start missing the deadline. So, this is from where we left it off. 

(Refer Slide Time: 01:44) 

 

Now let us just go forward with further discussion on this topic. So, this idea that we are 

considering the priority, I mean, considering to prioritize tasks based on their period, that means 

if the smaller the period you give higher priority to the task, this idea was called a Rate Monitoring 

Scheduling that we discussed. So, the higher the rate I mean you give higher priority. So, the 

priority is monotonicities with respect to the rate of the task, okay. 

 

And we also kind of hypothesize that well among all such fixed priority schedulers, that means 

you are going to you are not going to change the priority of the tasks, okay, and as long as they are 

preemptive in this class of all possible scheduling algorithms, RM is going to be optimal with 

respect to feasibility. That means as long as some other non-RM schedule gives an algorithm gives 

the schedule for a given task set, RM will also be able to give a schedule.  

 

And this is optimal also considering that the context switch time is negligible. That means you do 

not need to account for any time that is spent in preempting one task and bringing another task to 

the CPU, we are considering that those are kind of happening spontaneously. If you look at this 



example, we are also saying that what is, this is the two-task scenario. So, the, I mean, when you 

are trying to give priorities to two tasks you have only two options whether to give higher priority 

𝜏1 or higher priority 𝜏2.  

 

So, if I consider the non-Rate Monotonic schedule which will definitely now give higher priority 

to 𝜏1 𝜏2, the question is when does this non-RM schedule also becomes feasible? So, the condition 

will be very simple. So, if you see, this is where 𝜏1's first instance has come, right. So, let me just 

mark it out. So, this is where 𝜏1’s let us call it 𝜏1
1 that has arrived and it should be executed 

somewhere between inside this interval, right.  

 

 

And then this is exactly where 𝜏1’s second instance comes and it should be in executed inside this 

interval, right. Now this is exactly where 𝜏2’s first instances arrived and it must be executed inside 

this period of 𝜏2, right. This is the period. Now the question is if the non-RM schedule that means 

has to be feasible that means I want to execute 𝜏2's instance before 𝜏1’s instance. Well, let us put 

𝜏2 here so 𝜏2 will eat up e2 amount of time of the CPU, right. e2 is 𝜏2's execution time.  

 

And only then the CPU is free to actually execute 𝜏1 because we are we are giving 𝜏1 less priority, 

right. So, now 𝜏1 will take this e1 amount of time and now note that this is where I have the deadline 

of 𝜏1, right, because after this p1 = d1, the deadline, I have 𝜏1 second instance coming, right. So, 

only as long as I have this e1 + e2 to be less than or equal to p1 and this is a feasible schedule.  

 

It is clear to see that, well if this constraint is not violated, that means, let us say e1 + e2 is greater 

than p1, then 𝜏1’s execution will not end here inside e1, it will spill over on the other side and that 

will lead to a deadline miss for 𝜏1, right. So, that is why this is feasible if and only if this 𝑒1 + 𝑒2 ≤

𝑝1 holds. 
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So, for the non-RM schedule this is an absolutely necessary it is an if and only if kind of condition. 

But what of the RM schedule? So, for RM schedule that is not a necessary condition. That means 

even if 𝑒1 + 𝑒2 ≤ 𝑝1, this is not satisfied, still RM can give me a satisfiable answer. I mean why 

because well in our in case of RM 𝜏1 will execute first, right. So, we will have kind of 𝜏1 finishing 

up right here, right.  

 

And then I do not need this to be satisfied. The reason being well 𝜏2 will be starting at this point, 

right. Although it arrived at this point it is starting right at this point and as you can see, I mean, it 

is taking this much amount of time. But suppose even if it does not finish here, no problem. Let us 

preempt it with 𝜏1’s next instance because that has come. And this is RM so I am giving more time 

here. So, when this one finishes whatever is left of 𝜏2 that can work it up here, right.  

 

So, as long as 𝜏2 is small enough to be split and executed in this gaps and 𝜏2's execution ends before 

this point of time, right. It can even execute a bit of it here, right. So, then we are fine, right, 

because by this time 𝜏1’s 1, 2, 3, 4, right. These four instances of 𝜏1 here and then this and then 

this and then these four instances of 𝜏1 have executed. And inside this interval p2, I need to execute 

only one instance of 𝜏2, right.  

 



So, as long as these holes that are left, they are good enough to fill in one full instance of 𝜏2 maybe 

in a split manner because 𝜏2 is getting continuously preempted, and then we are fine. So, this is 

not required. So, it is not necessary but if it is satisfied then it is, I mean, its anywhere going to be 

schedulable. So, this is sufficient that is why we say please observe the wording here in case 𝑒1 +

𝑒2 ≤ 𝑝1, it is sufficient for a sufficient condition for making RM schedule to be feasible, but it is 

also not necessary.  

 

That means even if this is not satisfied, still as long as I, the scenario that I just described, that 

occurs, that there are enough holes inside p 2, the timeline p 2, to fit in due to 𝜏2's one instance, it 

is okay as per RM scheduling. So, that is that is the point we are trying to make here.  

(Refer Slide Time: 08:23) 

 

So, in general this is what we can say that you are given a preemptive fixed priority scheduler and 

you are given a finite set of repeating tasks. So, this is your task set. Ideally, I would like to have 

these brackets here. So, this is a set of n tasks and you have their associated periods p1 to pn and 

let us say the tasks are independent, that mean there is no dependency. We do not have this kind 

of thing that only when 𝜏1 ends 𝜏2 can start or only when 𝜏2 and 𝜏3 ends only then 𝜏4 can start. 

 

As long as we do not have this kind of period is a, I mean, precedence constraints here. So, this is 

what they are called precedence constraints or dependencies, right. As long as that is not the case, 



then like we said that RMS is, I mean, is optimal with respect to feasibility, which means in such 

case when I have a set of independent tasks and associated periods, as long as any, I mean, any 

priority assignment to the tasks is going to give me a feasible schedule, I have a guarantee that 

Rate Monotonic priority assignment is also going to give me a feasible schedule. So, that is why 

it is optimal with respect to feasibility. Now how is this implemented? We have made this point 

earlier also, we have told that well Rate Monotonic scheduling is very easy to implement. The idea 

would be simple, that well, you have you can have a dispatcher which will schedule 𝜏1 which will 

give 𝜏1 to the CPU, and also, it will set up a timer interrupt, right. 

 

Because it knows exactly when 𝜏1's next instance needs to be executed, right. And whenever some 

other task comes let us say 𝜏2, 𝜏3 they are coming, right, whenever they arrive it is just going to 

wake up it is going to check that well as long as the highest priority task is running, its completely 

uninterrupted. But for every other task there would be an interrupt that is set through let us say a 

watchdog timer or similar setups. An interact would be set in the CPU, right.  

 

So, whenever, I mean, it is going to be implemented through a timer kind of interrupt. So, whenever 

the timer expires what does that mean? The timer expires you will get a hardware interrupt, right, 

the dispatcher will wake up. Now it has to check that well through its interrupt service routine it is 

going to check that well this timer has expired for which task, right? And that you can know by 

looking at the interrupt value, I mean, it is basically the interrupt is with respect to which task, 

right?  

 

And it is just going to see that well what task is executing. If a task of a higher priority is executing 

just do not bother, right, and just let it just execute. And otherwise, it is if not so then, if there is 

no higher priority as executing and whatever is executing is our lower priority, preempt it, save its 

context, I mean, save whatever is the register state of the processor. I mean in that tasks contest 

and make this task which is of higher priority execute.  

 



Because the interrupt has come, means the corresponding timer has expired. That means a new 

instance of this task is going to execute. Now one thing I will like to make clear whenever I am 

saying, whenever we keep on saying that well one new instance of task arrives, I mean, typically 

what does it mean? In most cases what it would mean is well, I mean, the task does not really 

arrive, right. It is a program in execution.  

 

So, you have the same executable executing with periodicity. What really is going to change is 

that this let us say this is a sensing task. There are sensed values that are going to arrive at some 

periodicity based on the physics of sensors and their implementation we discussed earlier and the 

same code is going to execute again and again with this different input values and that is what is 

the different task instances, right. 

 

So, for the first sensor input you have task 1’s instance 1. For the second set of sensor input, you 

have task 1’s instance 2 and that is how it will work. So, in most systems this is how I mean this 

is what we mean by a task arrives basically its inputs have arrived through a sensing system. So, 

well going forward. This is an important thing important calculation we have. So, when you have 

this set of tasks executing, okay, at 𝜏1 to 𝜏n with period p1 to pn, and we are going to allocate the 

CPU based on some algorithm like rate monitoring scheduling. Well, what is the utilization of the 

CPU that how efficiently is the CPU really used? So, this is actually calculated by this metric, 

𝜇 =∑
𝑒𝑖
𝑝𝑖

𝑛

𝑖=1

 

As you can see that is you just sum up well for each task it has an arrival interval of pi, right, and 

inside this interval the amount of time it must get access to the CPU is ei, right.  

  

 

So, this ei/pi fraction is basically this tasks time quant to be taken from the overall CPU's time 

quanta, right. And in this way each task will consume some bandwidth of the CPU and the total 

bandwidth consumed in this way is what we call as the utilization. Now in RM, in the case of RM 



schedules, it can be proved that this utilization is always upper bounded. So, let us understand one 

thing. You will always like to have a scheduling algorithm which ensures that you use the CPU's 

bandwidth fully, right.  

 

When, do what do I mean by using the bandwidth fully? Because well the bandwidth is a maximum 

available limit, right. So, let us say ah this is CPU time I am plotting. Right now, you execute some 

task, then again you start another task, then again you start another task, like that. So, apart from 

let us say this position, the CPU is always occupied. Let us say now right now there is a bit of 

empty burst and then again, another task occupies the CPU, right.  

 

So, the amount so utilization is kind of a measure which tells me that am I really occupy making, 

am I really engaging the CPU, am I really using it as much as possible, right. Ideally, I will like to 

have utilization to be almost near to one, that means, I am always able to efficiently utilize the 

CPU, right. The same concept of utilization will also utilization as well as scheduling will also 

apply to communication on bus, like we have discussed earlier.  

 

Scheduling can happen inside a processor, computation scheduling. Scheduling also happens on a 

bus for communication scheduling, if the bus is the resource and the processor is the resource. The 

consumer is some process or the consumer is some message on the bus. Now it can be shown that 

well in case of RM, your utilization is always going to be much below 1. 1 is the idealization I 

would like to approach, right. 

 

And as you can see from this formula with n increasing, this value is going to be smaller, right. 

So, well that I mean that is the thing RM has given you this upper bound, it can be proved actually 

and the proofs are there in the papers on real time Rate Monitoring Scheduling. We are keeping it 

out of scope here but anybody interested you can always study or discuss with me. So, this is like 

a bound on Rate Monotonic Scheduling. But the question is well can we do better than this? 

(Refer Slide Time: 16:30) 



 

How do I get a better utilization? Is it really possible? Well, so the, as you can see that this bound 

holds for Rate Monotonic Scheduling. So, that means if I can design a more, I would say design a 

smarter scheduling algorithm, it may definitely be possible to have a better utilization. So, let us 

try and understand how the scheduling scheme that we discussed can be made smarter. What are 

the constraints that we have in the current scheme?  

 

If you observe the current scheme, one issue that is there, is you are always assigning tasks some 

fixed priority. You are as you are saying that 𝜏1 has always the highest priority, higher priority than 

𝜏2, or let us say you are saying 𝜏2 always has a higher priority than 𝜏3. And when I say always, I 

mean for all instances of 𝜏1, or I mean for all instances of 𝜏2. Now let us understand that this may 

be a bit of what should I say it is the bit of I mean a conservative approach.  

 

Why? Because certain instances of certain tasks may need to be handled in a more urgent manner. 

Because maybe it is deadline is approaching fast, okay. So, let us say some task, has arrived and 

then well immediately it got the CPU, right. But then again let us say some task, arrived it got the 

CPU, but again it got preempted by another task, again it got the CPU, again it got preempted by 

another task. So, with time what is happening is this task it still has some amount of stuff to execute 

but its deadline is slowly getting nearby, right.  

 



 

So, a smart scheduling algorithm will like to prioritize this task based on how much of it is left to 

execute with respect to its deadline, okay. So, when I am talked about deadline earlier, we said 

that well this is the task instance and this is its deadline and after that there is a next task instance. 

But if you think that well the task can get preempted or the task may be the task never actually got 

the CPU, it has been waiting and waiting and now it is deadline is almost nearby, right.  

 

So, with time I should have an option, that well, with time a task deadline can a tasks priority can 

increase, okay. Or similarly it can decrease in some other cases, okay. So, this is one issue with 

Rate Monotonic Scheduling. That well, if I give fixed priority, then I am really not modelling the 

dynamic scenario that well this task instance of some specific task it is waiting for how much time? 

This dynamic scenario is not really modelled there.  

 

So, the alternative and smarter option can be to use dynamic priority schedulers. So, what does 

dynamic priority mean? That well the priority of the task can vary across its instances. So, we will 

see some examples. So, suppose I am given a set of non-repeating tasks, and they have their 

deadlines, and there is no precedence constraint, then an alternative algorithm will be, which 

actually takes care of this kind of dynamic priority, is called Earliest Due Date (EDD), or also 

known as, its known as the Jackson’s algorithm.  

 

So, we are trying to design. But you may be wondering why we are talking about non repeating 

task? Well, EDD's original design was based on that. But we will soon see that in for all practical 

purposes the real algorithm we use for repeating task is just a variant of EDD. So, suppose you are 

given this kind of finite set of non-repeating tasks and they have their deadlines and there is no 

precedence constraints, then all that the EDD algorithm does is it will try to minimize the 

maximum lateness and what it will do is it will simply see which task has the earliest deadline, 

okay. So, whichever as the earliest deadline or earliest due date as per the name it will try to give 

it the highest priority, okay. Now it can be shown that in among all such algorithms, okay, this one 

is optimal. That means it is optimal in the sense that it minimizes the maximum lateness. 



 

So, suppose I am given this 𝜏1, 𝜏2, 𝜏n this sequence of tasks, I mean, this collection of tasks. You 

can, you can schedule them in various possible ways, right. A schedule is nothing but an ordering 

of the execution of these tasks. What we are claiming is that the EDD schedule will minimize the 

maximum lateness. I hope you will remember what is the maximum lateness. So, maximum 

lateness means among these tasks set that the, I mean, you have tasks with some start times and 

you have task with their corresponding finishing times. 

 

So, you have to take the, I mean, for each task you can calculate their lateness values and finally 

among those you can see what is the maximum lateness value, right. Now this is the algorithm 

which will minimize the maximized lateness, and that it is optimal in with respect to this metric. 

And that means if I kind of arrange these tasks in any other possible order, and also in this order, 

it is in this order that the maximum lateness will be minimized.  
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So, let us try to understand this claim with respect to a simple two task system first. So, suppose 

you have these two tasks, this task i and task j. So, these examples have all been taken from that 

book by Lee and Seshia only, okay. So, what we will do is we will try to create two schedules. 

One is a non-EDD schedule and other is the state EDD schedule. So, if you see in this example of 

schedule 1, so you have task i and that has a finishing time fi, right.  



 

And we are saying that after task i, we are starting the task j, right, and that has a finishing time f 

j. But what we are looking at is the, if you see the deadlines of the tasks, j’s execution was more 

urgent because the deadline is earlier and this i’s deadline is later on. But these are non-EDD 

schedule, that is why i is preceding the j’th task, okay. Now, I mean, if I take the EDD schedule, 

it will be the reverse of this, because as per the earliest deadline j will execute first and i will 

execute later on, right.  

 

So, let us compute the maximum lateness in both cases. So, maximum lateness for both is what? 

In, I mean, in the first instance, I mean, I can always write this equation, 

𝐿𝑚𝑎𝑥 = max(𝑓𝑖 −𝑑𝑖 , 𝑓𝑗 − 𝑑𝑗) 

that fi – di is the lateness of task i, similarly fj – dj is the lateness of task j. So, the max of this is the 

maximum lateness of this two-task system. Now if you see in this case well what is fi – di, it is this 

much and what is fj – dj, it is this much. And well both are kind of negative values, right.  

 

So, if you are going to take the max it should be fj – dj. Mind both are the negative values. So, the 

one with the smaller magnitude would be the maximum one here, right. So, now in this case this 

is of course happening because of this constants 𝑓𝑖 ≤ 𝑓𝑗, right. It is earlier and dj is also earlier than 

di, right. So, this difference magnitude is smaller. So with the sign, I mean, with the sign this is the 

maximum, right.  

 

Now if you look at the other case what can we say? So, here you have 𝑓𝑖
′ − 𝑑𝑖 and 𝑓𝑗

′ − 𝑑𝑗, right. 

So, what can we write here? So, this is your fj
’ and dj, right, and you have this fi

’ and di, right. So, 

if you look at this scenario, we are claiming that well again in this case, we can say that the 

difference should be, well you see, in both cases that I mean the value should be same that is fj – 

dj, right. Question is why?  

 



The reason is well, what we are reversing is the task set, right. But if you look at what is fi
’, fi

’ is 

nothing but it is equal to fj, why? Because this is the finishing term, finishing time of the second 

task, that is fj in the first case, and fi
’ is the finishing time of the task in the second case, right. So, 

what you really have here, is this fi
’ is basically equal to fj. Why? Because definitely, I mean one 

task is ending and the next task is starting and only their order is changing. So, the final time when 

both the tasks finish that has to be the same, right. That is why we can always claim that will this 

is it. So, from this point, we will argue this further. So, we will finish this lecture here and continue 

again from this point. Thank you. 

 


