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 Lecture - 11 

Real Time Task Scheduling for CPS (Continued) 

 

Welcome back to this lecture series on Foundations of Cyber Physical Systems. So, if you 

remember in the previous lecture, we have been talking about real time task execution models and 

we will be continuing from there. 

(Refer Slide Time: 00:39) 

 

So, just to briefly introduce, what are the different task execution attributes that the real time task 

may have. So, this is the picture I have taken from this book by Edward Lee and Sanji Seshia on 

Introduction to Embedded Systems - A Cyber Physical Systems Approach. Actually, most of my 

coverage on real time systems is kind of reproduced from this literature. So, you can just refer to 

chapter 4 of this book on real time scheduling. You will see this picture.  

 

So, typically when we talk about a periodic task. So, the characterization of a task will start with. 

So, this is a timeline and the time instant when the task is set forth for execution, that means it is 



given the task has arrived and it has been released for execution is called the release time ri. So, 

that means the system some dispatcher has provided the system with this task instance, okay. That 

does not mean that the task will start executing right now.  

 

The task will start executing when the scheduler decides, the scheduler which is implemented as 

a may be set of interrupts through the hardware, or the scheduler which is implemented in the form 

of a software algorithm. I mean, that will decide when the task will really get access to the CPU 

and when it will really exit, right. So, that is what we call as the start time. When the task starts 

execution. And like we discussed earlier that the tasks execution may be preempted by some other 

event or some other task of higher priority.  

 

So, these are points of preemption where a task can be preempted. And when the task resumes it 

will continue its further execution and in this way during its execution a task can be preempted 

multiple times and eventually when this task instance finishes, that is what we call as the finish 

time fi. So, and this interval for starting from the release time to the actual finish time of the task 

is called the response time. 

 

So, this is an important measurement of task execution, response time. Means when the task was 

made available and eventually when the task instance finished this interval is known as response 

time. And for a real time, task we always have an instance of deadline. So, let us say the deadline 

is given here as di and as you can see that the task finished before the deadline, right. So there is 

no lateness here.  

 

So, when I am computing lateness, it is something which is basically finishing time minus the 

deadline. The lateness is negative that means the task executed within the deadline, okay. Now 

unless the deadline is explicitly specified, you can always assume that for a periodic task the period 

itself is the deadline. That means one is trying to say that as long as the next task instance from the 

same task has not arrived in the system, by this interval you must have executed the previous 

instance of the task which was dispatched to the system. 

(Refer Slide Time: 03:56) 



 

Now just a small classification of different kinds of scheduling that happens in embedded and 

cyber physical systems. So, you can have a system which is a hard real time or a soft real time 

system. That means the deadline provided may be a hard deadline or a soft deadline. We have 

already talked about this preemptive and non-preemptive scheduling type. That means the 

scheduler may allow tasks to be preempted or not. And the other is tasks priorities. 

 

If you remember we talked about static scheduling and dynamic scheduling, where task decisions 

were made statically offline before the system was online, or online scheduling where the task 

decisions were made during the systems execution. In a similar manner we can think of fixed and 

dynamic situation with respect to task priorities also. Now what is the priority of a task? See the 

moment we are talking about preemption and stuff like that we are saying that well one task can 

halt the, temporarily halt the execution of another task, and make itself to execute. That means the 

task which preempts another task will have a higher, I mean, some more importance, right. So, this 

idea of importance is being formally captured using the notion of priorities. So, every task can be 

thought of as having some priority level. Every task type can be thought of as having some priority 

level. So, let us say you have two sensors which are sampling data. Let us say lidar data and let us 

say camera data. 

 

If your system considers the lidar data as more important to be processed, it will give, assign a 

higher priority to the lidar data, okay. So, when you are doing to going to do scheduling, eventually 



it will be about priorities. Typically, in a dynamic scheduling system, if you are talking, going to 

implement preemption and other kind of things, it is about doing the priority assignment, that 

which task has higher priority that is going to be given the CPU.  

 

Now the question is this kind of priorities, they can be like we have been discussing, they can be 

fixed or dynamic. That means for a specific task type, I can have a fixed priority. Or in another 

kind of scheduling I can allow tasks to have dynamic priority. That means, what is the priority of 

the task? See, what is the priority of the task is eventually going to decide which task gets the CPU, 

right. So, as long as typically a highest priority task has a released instance still not executed, that 

is what should get the CPU. Any scheduling algorithm will work like that. So, when we have any 

fixed priority scheduling algorithm, the idea is simple. You have many tasks with fixed priorities. 

Whenever a task of the highest priority is available it will execute, and so on so forth. Now in case 

the priorities are not fixed that means we are thinking that the priority will be dynamically 

calculated based on some task attribute.  

 

Maybe how much time is left for the task to finish. Or maybe at what periodicity the task is going 

to come, assuming the periods may not be fixed, something like that. I mean, so, there may be 

some online situations. There may be some variations in periodicities of the tasks happening things 

like that. So, depending on such dynamic events if the task priority is decided, then we will say 

that well it is a dynamic priority scheduling algorithm.  

 

Now, coming to the next point. Like we said earlier that priority can be different than deadline. If 

you remember earlier, we said that well if the deadline is not mentioned we can assume the 

deadline and period are same. But in general, for a given system, for full real time specification I 

will be measuring the period and also the deadline. Now one may start thinking that well if I have 

a task with an earlier deadline, that means I must execute earlier also. That is not really the case.  

 

 

I mean it may be so, it may not be. So, I may have a situation where tasks are going to have 

different criticalities. So, I may have a task which is marked as critical and that may have a deadline 

far away. But since it is critical it may also have a higher priority. So, that is the point I am trying 



to make, that priority in general may or may not be equivalent to deadline. Like we should not 

start suddenly thinking that everything which has the earliest deadline will always have the highest 

priority, because there may be some other attributes like we discussed.  

 

So, based on these attributes. Like whether we are allowing preemption or not allowing preemption 

whether the priority is fixed or priority is computed dynamically at runtime, priority is assigned 

dynamically, we have these different classes of schedulers. We can have a preemptive priority-

based scheduler. So, a preemptive priority-based scheduler will support arrival of tasks at all times, 

right. So, you have periodic tasks which are arriving.  

 

And whenever a task, I mean, at any point of time you are looking at well, which task has the 

highest priority. Let us say you suddenly get a task inside your system which has priority more 

than whatever task is currently executing. You will be preempting that currently executing task 

and you will just execute this new task. So, let us say you have this CPU, and you are executing 

some task. So right now, if this task is executing, that means let us say you have T, T’ which are 

waiting.  

 

And let us say this is T’’ , then priority of T’’ must be greater than or equal to max of the priority 

of this T and priority of T’, right. That is why this is executing. Now suppose in this system you 

have a new task that has arrived, okay. And that means now, and let us say that task has a priority 

higher than this. Then this scheduling algorithm is very simple, right. It is just looking at its active 

set. And the set has been updated because a new task has arrived.  

 

So, it will take a scheduling decision. And if it finds that current active set which has been updated 

is containing something having higher priority than whatever is executing, it may just preempt this 

task. And take it back to the incomplete task queue, and schedule whatever has arrived with the 

highest priority. Now the other option can be non-preemptive priority-based scheduler. So, the 

same thing like we discussed. But we do not preempt if anything is executing, okay.  

 

So, based on priorities you are this going to decide that what should be the next task after the 

current one which is executing. That means you let the current one execute, finishes execution, 



even if something with higher priority has arrived, okay. So, these two options come in. So, in this 

case what happens is you never interrupt a task during its execution to schedule another new task 

that may have arrived. 

(Refer Slide Time: 11:02) 

 

So, if I want to formally characterize that what is my scheduling goal. If I am going to design a 

scheduler what is really the thing that this scheduler is going to do. The scheduler's job is simple. 

It is going to just check, that well, it is able to execute all these tasks before their deadlines. That 

means, the constraint that this scheduler must meet is for all tasks i belonging to this set of tasks. 

The finishing time is less than or equal to the deadline of each of the tasks, right. 

 

So, observe that this may not be a unique thing, right. So, let us just empirically represent a 

schedule. Let us say you have some tasks T1 and T2. They may be periodic. So, when I say that I 

have a scheduled sigma, what I mean is, I am able to assign to every instance of T1 if even if it is 

repeating, I am able to assign a feasible start time. That well I say that this is when T1’s instance 

one starts, this is when T2’s instance one starts with this kind of a start time value. And this 

continues for all future instances.  

 

If I can give a formula which is specifying these values and applying that formula, I can solve it 

for all future instances. Or I can just write a pattern that and follow that pattern of start times. That 

is my schedule. So, in general the way we look for schedules is that we try to schedule tasks up to 



the hyper period. Now what is the hyper period? Let us say this task has period p1 and this task 

has period p2. Hyper period H is nothing but the 𝑙𝑐𝑚(𝑝1, 𝑝2).  

 

Now what would happen is inside this timeline of size H you have H/p1 number of instances of 

the task T1 and H/p2 number of instances of the task T2, right. So, as long as you have a schedule 

which is able to figure out start times for all these instances, these number of instances of T1, and 

these number of instances of T2. This is what is going to repeat again in the next hyper period, 

right. So, if you try to draw up to some hyper period H, whatever instances of T2 you have, you 

are able to schedule them and whatever instances of T2 you have you are able to schedule them. 

This is what will repeat in the next hyper period and it is just going to continue, right. So, any 

schedule where for all these instances inside the hyper period you are able to satisfy this, you are 

going to satisfy this definitely in the next instance because that is what is just repeating, right. And 

there is a feasible schedule.  

 

Now there is this terminology called optimal with respect to feasibility. So, what it means is a 

scheduler that yields a feasible schedule as long as it exists. So, I am saying optimal not with 

respect to execution time. Notice this. First, I have defined what is a feasible schedule. That means 

it satisfies the timing constraint. And then I am not saying, I am not saying optimal with respect 

to execution time. But I am saying optimal with respect to feasibility.  

 

This means that as long as a feasible schedule exists, as long as a feasible schedule exists for a 

given task a given collection of task, my scheduler, if it is able to find that schedule which really 

exists, I would say that this is an optimal scheduler. But it is optimal with respect to what? It is 

optimal with respect to the feasibility condition that a schedule is really feasible and since I mean 

as long as it is feasible if I can give a guarantee that my scheduling algorithm is going to discover 

it and output it, I will say that this is my optimal algorithm. But it is not optimal with respect to 

time or throughput, it is optimal with respect to feasibility. What would be optimal with respect to 

time? It would simply be the scheduler which always gives me a schedule such that there exists 

no other scheduler which gives me another schedule which is going to have an overall time less 

than the one given by this scheduler. That would be something like optimal with respect to time.  

 



Now there is something else if you remember we talked about not only real, I mean, hard deadline 

tasks, but we also talked about soft real time settings of tasks and schedules, right. So, in a hard 

deadline setting this needs to be satisfied, but in soft deadline deadlines may often get overrun, 

right. So, that means this quantity may be positive, right. So, this is what we call as lateness, right. 

So, when I am looking for soft real time systems it, I have to accept lateness, right. But we can 

create a metric which we call as this maximum lateness metric. That I figure out for all the tasks 

so what is the lateness that is incurred and I figure out what is the maximum among them. So, that 

would be like a metric to evaluate how good a soft real time schedule is. There is another criteria 

that we call a schedule makespan. So, I can also create a scheduling algorithms optimality check 

with respect to. Just like I we have defined it with respect to feasibility, it can be with respect to 

lateness, optimal with respect to lateness.  

 

That means any other scheduling algorithm cannot give me a schedule which has a smaller lateness 

value, smaller max lateness value, okay. But if I am talking about it with respect to time, then the 

criteria really would be in a makespan. So, what is makespan? So, let us say you have a set of 

tasks, your schedule starts at several instances. Let us say your schedule is built on task T1 and T2 

and let us say this is your hyper period inside which you have many instances of T1 and many 

instances of T2. This is the earliest release time of this task T1 and T2. Let us say T1's first instance 

got released here, T2's first instance got released here, right. So, among these two release times, 

this one is the earliest one, right. Now let us say the most late instance of T1 got finished somewhere 

here, right. 𝑇1
𝑚 let us say and the last instance of T2 inside the hyper period got finished somewhere 

here, right.  

 

So, the most late instance here is this, right. So, this is the largest finishing time, right. So, then I 

can typically say that inside the hyper period the overall task execution of all the tasks started at 

this point and they got finished somewhere at this point, right. And this interval is what I will like 

to call as the makespan, right (18:40). So, then if I am trying to define this formally, I would say 

that among all the tasks finishing times the maximum value, which is this.  

 

And from that you subtract that among all the instances release times, what is the minimum value. 

So that is the earliest position. So, subtract the earliest position from the late most position among 



all the tasks, and this is the span inside which all your tasks have executed. And this is what I 

would let us say call it as a makespan. So, this was I will just repeat that T1m is the last instance 

of T1. And 𝑇1
1 was the first instance. And let us say all the T2 instances are in between.  

 

It could have been otherwise also like, this could have been T2 and this could have been T1. 

Whatever is the last one to finish and whatever is the first one to start among all the tasks, right. 

That is why you have max
𝑖∈𝑇

𝑓𝑖 − min
𝑖∈𝑇

𝑟𝑖. That is why the condition looks like this here. So, that is 

how we define makespan (19:48). 
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Now let us get started with our first scheduling algorithm. So, we will start with one of the most 

popular yet most simple scheduling algorithm known as RMS or Rate Monotonic Scheduling. So, 

it was invented by Liu and Leyland, 1973. It is a preemptive scheduling strategy. That means that 

once the task set is updated the priorities will be checked and if there is a high priority task which 

recently arrive, it can preempt a current executing task, okay.  

 

So, you are given a set of tasks and in this case, it is very simple. Priority is equal to the period. I 

mean if you have task with the smallest priority, it is is going to have the highest period. I mean, 

task with the smallest period will have the highest priority, sorry. So, suppose you have a 𝜏𝑖 and 

this has got released at some time ri. So, at time ri you have got tau i which has been released, right. 

And it has a period pi. So, for some jth instance’s execution, you have how many instances?  



 

So, you have j number of instances and let us say these instances are separated by a period p, right. 

So, let us say j = 2 so this is the first instance, let. So let us call it the 0th instance here, right. And 

this is your second instance, right. Okay let us count for one only so 𝜏𝑖. Let us count from 0. So, j 

is 2 that means you have 3 instances. This is this. And that say this is your i = 1 and that say this 

is your 𝜏𝑖
2. So, if you see what is the time like this is. So, these are the instances when the tasks are 

going to be released, and this is the initial release time. Or better this is known as the offset of the 

release, right. So, the eventual release time here will be ri + 3 * pi, right. If I am just counting from 

i = 1, so this is the third instance is 1, 2 and 3. So ri plus 3 pi is as simple as that. So, in that way 

given this initial offset I can always compute what is the exact time when these tasks some ith or 

jth instance is going to be released into the system, right.  

 

Now similarly for this is what is happening for tau 1. Similarly, you will have release instances 

for tau 2. Similarly, you will have release instances for tau 3. So and so forth. So this is the first 

release time. So, I will just repeat. Typically, this is what we call as the offset here. Now this 

algorithm, the way it is going to choose among task instances of the different tasks and give to the 

CPU, like we have discussed, is based on the priority and the priority is computed based on the 

rate of the task.  

 

So, if a task has lower period value, it has a higher priority value. So, why do I call it Rate 

Monotonic? Lower period means higher rate, right. I mean, number of tasks executed is going to 

higher, the frequency of task is higher, right. So, with higher rate you have higher priority, okay. 

So, it is as simple as that. You have a set of tasks with varying periods the one with the highest 

rate or lowest period will always have the highest priority here.  

 

Now it can be shown that among all possible scheduling techniques which allow preemption in a 

uniprocessor scenario, and where the priority is fixed, this is optimal with respect to feasibility. 

So, let us understand again. So, see in this scheme the priority of the tasks do not change, right. 

Because the priority is simply defined as priority equal to, I mean, priority is just the I mean the 

inverse of period, I would say. I mean smaller the period the higher is the priority.  

 



So, the higher the rate the higher is the priority. So, if you have a fixed task set with no change in 

periods, the priorities are never changing. So, as long as with a fixed set of tasks and their fixed 

attributes, the priorities are fixed. So, it is a fixed priority algorithm. And what we are saying is 

what if, for given any such task set, any such periodic task set, if I have any other fixed priority 

algorithm any algorithm which works with fixed priorities.  

 

And they are able to find a feasible schedule, then this algorithm will also be able to find a feasible 

schedule. So, that is all about it. It is a very simple algorithm and it works as good as other 

algorithms, like this one says among the fixed priority algorithms. But why people love this 

algorithm is, it is very easy to implement. Because there is nothing much to implement. It is all 

about what are the tasks that are execute, I mean, inbound in the system, existing in the system. 

Which one has the lowest priority, the lowest period, sorry, just execute it.  

 

The one with lowest period, if it is a there just execute it. It is as simple as that. So, it can be simply 

I mean, very, I mean implemented in a very lightweight manner and that is why still RM scheduling 

is extremely popular in real time systems.  

(Refer Slide Time: 25:52) 

 

So, we will just try to argue why this is optimal with respect to feasibility. So, let us have a look 

into this example. So, you have two tasks 𝜏1 and 𝜏2 and this, again this example has been taken 

from this book, okay, by Edward Lee and Sanji Seshia. So, you have 𝜏1. As you can see that 𝜏1  



has a smaller period it has a higher rate and 𝜏2 has a higher period a lower rate. e1 is the execution 

time of 𝜏1.  

 

So, typically when I am now trying to characterize real time periodic tasks, they will be 

characterized by this kind of tuples, right. So, for some task T1, you have a period p1 and the 

execution time and if the deadline is something different from period, you also write that, okay. 

So, for 𝜏1 you have this e1 as the execution time, p1 as the period and here you have e2 as the 

execution time and p2 as the period.  

 

So, this is 𝜏2 second, first instance, and 𝜏2 second instance, okay. Now what we are trying to argue 

here is see, for this kind of a typical task set, it is not possible to have a non-preemptive schedule. 

I mean, there is no non primitive schedule which is feasible. So, let us understand why. I think it 

is quite evident from this picture. So, suppose you are not going to preempt the task, okay. Now 

suppose you are executing, I mean, initially these two both of them has come, right.  

 

So, either you are executing to execute 𝜏1 or you are going to execute 𝜏2, right. So, I mean let us 

say, I decide, I mean, if I am following Rate Monotonic. If I am trying to follow Rate Monotonic 

in a non-preemptive way, what am I really going to do? I am trying to execute tau 1 first. So, then 

once tau 1 is executed, from this point I am going to start executing 𝜏2, right. So, essentially tau 2 

will start from here and 𝜏2 will end somewhere here, right.  

 

So, then see, since I am saying that I am going to having, I am going to have no preemption 

supported the moment 𝜏2 gets the CPU, 𝜏1’s other instances which will arrive during 𝜏2's 

execution. For example, this instance and this instance, none of them will get access to the CPU. 

So, that means 𝜏1 will start missing deadline. So, you see that the non-preemptive schedule is 

simply not feasible.  

 

Now let us look at the option of using preemption. With preemption this is pretty much solvable. 

With preemption if I start giving more priority to 𝜏1, I have a feasible schedule. Feasible because 

all the task instances will execute before that deadline. So, see I, when I start, I will execute with 



tau 1 and I am giving more priority to the more frequent task. Basically, I am following Rate 

Monotonic.  

 

So, then I am starting 𝜏2 here, okay. This blue region I am executing. When tau 1’s next instance 

comes whenever 𝜏1 instance is available, I just preempt 𝜏2, okay. So, in this way 𝜏2 will extend up 

to this much time. Whereas here 𝜏2’s execution time is supposed to be this much. But due to this 

it was actually accommodating all the instances of tau 1. So, its execution time will actually extend 

by a specific amount and I think it is easy to calculate. We can just check that this is thrice of e1.  

 

Because that is the time required to execute 3 instances of 𝜏1. But as you see here 𝜏1 has always 

met your deadline. Because whenever it wanted the CPU, whenever it has been released, it has 

been immediately allocated at the CPU. Has 𝜏2 met its deadline? Yes. Because this is the deadline, 

when much before the deadline, this has executed, right. So that is fine. And similarly, this thing 

will just keep on continuing for the next hyper period, right.  

 

Now you can just note that well, if I try to do preemptive schedule here by giving priority to 𝜏2 that 

is really not going to be feasible. So, this is not r2 but rather this is 𝜏2 here. Because let us say I 

mean that is what we just discussed, right. If I am just going to give priority 𝜏2, it is almost like 

this non preemptive scenario, we are talking about. That let us say, I decide that 𝜏2 will execute, 

okay. That means 𝜏2 has a higher priority.  

 

So, whenever 𝜏1 is coming, 𝜏1 is not going to preempt 𝜏2, because 𝜏2 has higher priority, right. So, 

all these instances will be missing their deadlines and well this may not but these two will definitely 

miss their deadlines, right. And then the schedule is not going to be feasible. So, we can actually 

go on to argue that while I mean I am in RMS optimal with respect to feasibility, but we will stop 

here for the interest of time. And we will continue in the next lecture from this point. Thank you. 

 


