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 Lecture - 59 

SVM (Part - Ⅵ) 

 

Hello guys, so at last we have come to the end of this lecture. This is the last but one lecture of 

this course and in today's class we will wrap up our discussion on SVM. And then our last 

lecture is a tutorial class.  
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So, now before going ahead with this lecture today let us just take a quick recap what we have 

learned in this last four five lectures on SVM. So, basically, we are doing SVM for a 

classification purpose we were talking of SVM for a binary classification problem (()) (00:59) 

datas which are linearly separable. Then we went on to find out the equation of the hyperplane. 

So, what was the equation of the hyperplane.  

 

So, basically it was W . x + b = 0 this is my equation of the hyperplane. Now I we have already 

discussed this is W . x this is a dot product. So, we have already discussed that this expression 

if we divide by any constant value, we will get the then the hyperplane will that way we will 

get will be getting infinite hyperplane but all with the same slope and the same intercept. So, 

now to just to avoid this confusion we went ahead.  

 

And we found out that W x + b then W x + b = + - 1 which is nothing but two pipeline basically 

two line parallel to the hyper plane we can say it is a there is a parallel boundary we can say. 

So, now and then this was our equation of the hyperplane these are just two parallel hyperplane. 

Now our task was to find out the maximum margin hyperplane. So, in optimization task in the 

classification in SVM our main objective was to find out the maximum margin hyperplane.  

 

The hyperplane that will give us the maximum margin is not it that was our objective. So, with 

that objective then we went on to see that this is very much an optimization problem where we 

have used this the way we try to optimize this function let me write it here we try to optimize 



this is not it. And subject to there was a constraint subject to the constraint what was the 

constraint w i y i w i and w i . x i + b this is greater equals to 1 subject to this constraint.  

 

So, this is we have formulated this computation of maximum margin hyperplane. Our task is 

to compute the maximum margin hyperplane. So, computation of Maximum hyper margin 

hyperplane we have formulated it as an optimization problem so what is the optimization, we 

need to minimize this thing minimize. We need to minimize this subject to what subject to y i 

then to w i . x i + b which is greater equals to one y i is the different classes.  

 

Different means there will be two class. So, subject to this we have to minimize this and then 

we went ahead and to use lagrangian multiplier for optimizing this problem is not it for 

optimizing this formulation.  

(Refer Slide Time: 03:46) 

 
So, like now than what we have done. So, we have while trying to while using lagrangian 

multiplier we have introduced a dummy variable the dummy variable was λ remember. So, 

now then after we had formulated the lagrangian then we have differentiated with respect to 

the input variable that is x i x i of all we using all the attributes. So, we have differentiate the 

lagrangian with respect to that as well as we have differentiated the lagrangian with respect to 

the λ.  

 

Then we got different functions for that we try to find out the solution using any of the equation 

solving method. And then we found out the different values of the w n b so, while trying to do 

that we found out our W what is our W is equals to we found out our W = i = 1 to n λ i w i x i 

is not it. This is this was our W so n is the total support vectors. Now what happens once this 

is then again till this it was ok for us if we have data which was linearly separable.  

 

Now if the data’s are not linearly separable then what we have seen there are one way is to use 

the if some of the data not be very few data’s are not linearly separable then we could use the 

soft margin. And then if the soft margin is not applicable then we went ahead to use the 

transformation method like trans we have transformed the data from one space from one input 

space basically from the original space.  

 

And we have transformed the data to some other space of a higher dimensional by doing what 

we could solve the non-linearity of the data. If the data is non-linear so what happens what we 



have done this data we have transformed into some other space and once we have transformed 

it into some other space then we have used the same what to say same optimization problem 

and then we have solve it using lagrangian.  

 

But there what we have said instead of this initially the lagrangian form which you have used 

we have called it as a primal form that is the initial form. Then we have changed a bit and we 

are calling it a dual form.  
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So, dual what is the dual form of the lagrangian let me before going to the dual form now using 

the initial primal form of the lagrangian when we had to classify a data suppose we are 

classifying a test data x so, I am using it as to find out the classification updates test data we 

had to this is my step. So, from optimizing the lagrangian I got the value of w I got a value of 

b then using this w . x + b I could find out where my x data belongs to which class.  

 

So, this was till then. Now if the data is not linear then we have transformed and we have used 

the primal I mean so sorry the dual form of this, when we have used a dual form what was my 

classifier now. So, let me call it as this let me call it that primeval this may call is a dual form 

what was my dual formula classifier. Now during my duel from the classify and water 

equivalent just that it is i = 1 to m then λ i y i x i . x + b this was my dual form of the classifier.  

 

And then the optimization function also change it was a big function I am not writing it again 

you can see it in my slide. So, this was the dual form of the classifier. So, updating was till here 

but then we had some other problem. When we have transformed the data from one input 

dimensional space to some other dimensional space which is usually higher than this it is never 

lesser at sometimes, we are in the same dimensional but most of the time we go today higher 

dimension.  

 

So, when we do this transformation there are some issues with this. What are the issues the 

different issues? One of the issues is mapping. How do we do the mapping? That is how 

because for each monomial we will select a different mapping function or combination of two 

three monomial I will select a mapping function. So, how we will do the mapping this is one 

problem. Second problem is the cost of mapping.  

 



Then the third my third problem is the dimensionality problem. Dimensionality problem 

usually SVM does not suffer from the curse of dimensionality but and when it goes to a very 

high and high dimensional space computation it becomes very computational internship. Then 

it may suffer from dimensionality problem as well. The dimensional problem as well as 

computation cost dimensionally problem means computation cost will increase both are related 

actually as well as computational cost.  

 

So, these were the issues of the transformation of data from a lower dimensional space to a 

higher dimensional space to make the data linearly separable. Now then so mathematician have 

found a very intelligent way of dealing with this so, where we do not at all have to do the 

mapping without doing the mapping how we can go about it. So, what was the way?  
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So, what we have done here? Then next what we tried doing is that like so what was our what 

to say classify function let me write my classifier function again. Classify function in the dual 

form so what was my classifier function? My classifier function was λ i y i x i . x + d i = 1 to 

m this is my classifier function and a dual form. So, now this is in this classifier function what 

we see this is the dot product between the this is one test data for each days that I will see a dot 

product of this x is a test data and this is my training data.  

 

So, with the test data is a dot product of each and every training data. So, this is what when I 

try to find a class of x this is what we do dot product of this. Now when we; talk of dot product. 

What is dot product? Dot product actually we try to find out the similarity. When we find out 

a dot product between two vectors so if we try to find out the similarity is not it. The similarity 

of the two vectors x i . x so, now when we have transformed it into a difference space.  

 

So, this equation again and in the transform thing dimensional transforms dimensional space I 

can write this φ of x i this is the transform data and this is φ of x + b just I have transformed 

this is not it. So, here this is the; if now the condition is if the x i . x gives a similarity measure. 

Similarly, φ i x φ x i . φ x is also the similarity measure between φ x i and φ x this is the basic 

idea between behind a kernel trick, this is the basic idea. This is the basic idea behind a kernel 

trick.  
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So, what we went on to do is that so, now first thing is that when we have seen this X i X i . X 

j and φ of X i . φ of X j so this gives the similarity between these two data and these two vectors 

this gives the similarity between these two vectors the what is φ X i is a transform vector of X 

i φ X i is the transform vector of X j. Now this also gives similarity this also gives similarity. 

So, we were wondering is there any correlation between these two.  

 

And then we went on to find that this two are correlated φ of X i . φ of X j is very much 

correlated to X i . X j so, because then we can do, we could write that X i . X j implies to φ of 

X i . φ of X j implies to K of X i . X j, what does this mean. This kernel functions physically 

implies similarity this kernel function K it physically implies similarity in the transform space 

consider using the input space.  

 

So, I am repeating again what does this kernel function it implies similarity in the transform 

states φ of X i and φ of X is a similarity in the transform space. So, K of X i it gives the 

similarity in the transform space considering the input space taking the input space. We have 

taken the taken the data of the input the dimensional in the input space where it is whatever 

dimensional it is whatever two dimensional three dimension it is there have taken that data.  

 

And now we do not literally have to go to the transform states without going I can use a kernel 

function where I can see the similarity of the transform space data taking the input of the input 

dimensional input space. So, this is the now what is this K function? K function is such a 

function we are taking the input space data I can tell that similarity of the transform space data. 

Now what is this K function. So, essentially, we need to find this K function. So, that is what 

that is where we have stopped in my last lecture.  
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So, now starting from that so, what we will see is that the significance of the kernel trick how 

this we could use this kernel tree and we will also see different properties and some examples 

of kernel function.  
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So, basically what is the significance of kernel trick which I have already mentioned let us read 

it out the kernel function K of X i . X j physically implies the similarity in the transform space. 

What does K X i X j thus? It implies the similarity in the transform space that is the non-linear 

similarity measure using the original attribute. What is using? It is using the original data 

original X i X j like in my last lecture I have given you an example two fruits in the Indian 

soil.  

 

If I know the similarity between these two, similarly, if I have some function which can tell the 

similarity between two fruits and say UK soil, I do not need to go there I do not need to know 

what I do I can just tell the similarity between two fruits. If I have such function which can tell 

the similarity in the transform space there my transform space is a UK soil. So, if I can tell the 

similarity in the transforms is taking the using the original attribute using the original attribute.  

 

So, if I can know that; then I do not need to transform it my requirement is that why I am 

transforming a data so that I can the non-linearity I can make it linear. So, and actually what I 



am doing when I am trying to do the classification, I am basically trying to find out a similarity 

between two factors is not it what are this input inputs are nothing but the different vectors. So, 

when I am trying to classify whether it test data falls in this or this.  

 

I am trying to find out how much less data is similar to which the different two types of data. 

So, I am just finding the similarity so that is it. In other words, K the similarity function to 

compute a similarity of both whether data in the original attribute space or in that transform 

attribute space.  
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So, the first and foremost significance is that we do not require any φ transformation. We have 

such a function which can give the similarity and my transform space taking the data from the 

input space original input space. So, we do not require any φ transformation to the original 

input data at all. So, now what is my classifier? This is my classifier. Earlier classify λ i y i φ 

of X i φ of X is not it.  

 

This I was writing as λ of X; the X is the test data λ i y i φ of x i φ of X + b so φ of X i and φ 

of X means transforms this. Now I do not need this transform what is that instead of this I can 

write K of X i, X the similarity between these two factor K I have X i and X and subjected so 

this is my classifier now. And what is the learning what else I need to maximize this we have 

already seen the dual form of the lagrangian.  

 

Now in the last lecture we have seen. So, I need to maximize this subject to this so now my 

problem has become this if my data is linear fine if my data is non-linear so I will use this as 

my what to say optimization problem maximize this and subject to this. If when I will do this, 

I will be able to find out the different values of the lambdas different values of the basically I 

need to find out the values of λ only.  

 

Once I find out the values here only λ is in the primal form, I had I required W I require to find 

out W I require to find out B in this form I only need to find out the values of λ. So, that is 

sufficient for me to find out the expression of the hyper plane. And once I know the value of Λ 

then I can use the classifier to find out the class of a test data.  
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So, now what is the significance? One important significance it is easy and efficient 

computability. So, this first of all this is we do not have this already we have learned a last 

lecture we do not need W we do not need B just we need λ. We know that in SVM classifier 

we need several and repeated round of computation of dot product both in the learning phase 

as well as classical classification phase.  

 

So, dot product X i . X X i . X j so, we need to do repeated round of this dot product both as in 

the learning phase as well as the and classification phase. But on the other hand, using the 

kernel trick we can do it once and with fewer dot product we will see it how.  
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So, we define a matrix called we are calling it a design matrix which contains the data as 

follows. So, this is my design matrix where X 1 to X n these are the input data. So, total my 

total how many input data I have that means I can say it is the training data that is n training 

data or how many observation I have along with the class level that I call I may call it instead 

of trading data I can call it observation also along with the class level.  

 

So, I have total n data and it is in how much dimensional say it is an N dimensional that means 

each X 1 is a vector of N dimensional. Each input data this is one input data this is one input 

data so total there are small n data and each data each dimension of data is capital N so; I am 



defining a design matrix where my design matrix is small n cross begin. And so, where X 

contains all input data in the original input space.  

(Refer Slide Time: 19:58) 

 
Now what I will do I will define another matrix which I call a gram matrix this basically this 

is K what K we are talking about which contains all dotproducts as follows. We are calculating 

all the dotproducts what is dot product X so, when they suppose these two vectors a b two 

vectors say c d how do we do the dotproducts what do we do the dot product you know this so, 

it is ac + bd is not it. So, now here if I write in this way, we get the same thing was not it.  

 

So, that is all that is what we are trying we are finding out a dot product between all this input 

observation so this is how we are doing X 1 T X 1 X 1 T X 2 similar this one is all with X 1 

then the second row with X 2 X 2 T in X 1 X 2 T X 2. So, the third row with X 3 the third input 

data that way we find all the dot product. Now if we see here the note that K contains all that 

purpose among all training data that means among all observation.  

 

And note that this is definitely X i transpose into X i X j = X j transpose into X i this is obviously 

is not it, this is an obvious thing. So, when this is true that means, we do not need to compute 

the whole thing only if we compute half of it if you compute this, this value we will get because 

this is this, this is equal to this we are computing this and we are storing it. We are calling this 

as a gram matrix. This means we need to compute only half of the matrix.  

 

More significantly all dotproducts are made by means of matrix multiplication operation and 

that is to one operation only. So, now this is how we have computed all the dotproducts and 

essentially, we try to find a similarity between these two and we have kept it.  
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So, in nutshell we have the following, instead of mapping our data via φ and computing the 

dotproducts we can accomplish everything in one operation. Classifier can be learnt and 

applied without explicitly computing φ of X and here the complexity of learning depends on 

the number of input instance number of observation number of training data. It does not 

depends on the dimensionality because it is a simple matrix and (()) (22:40).  

 

It does not depends on the dimensionality it just depends on how many input data we have. So, 

it depends on N typically order of n to the power 3 and all that is required is the kernel all that 

is required is that we need to do this the risk K of X i X j is it simple exercise is a simple dot 

product or whatever what we need to do we need to find this kernel function. So, next we 

discuss the aspect of deciding kernel function.  
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So, before going to learn the thing different type of kernel function let us formally define kernel 

function. This is the formal definition you see the formal definition of the kernel function. A 

kernel function K of X i, X j is a real valued function defined on R definitely it is a real valued 

function is not it defined on R such that such that there is another function φ. So, which such 

as φ of X gives Z such that K of X i X j = φ of X i . φ of X j.  

 



So, this is the definition of kernel function if I formally define it. Please go to it again a kernel 

function K X i X j is a real valued function defined on R such that there is another function φ 

such that X gives Z φ of X gives that such that K of X i X j = φ of X i X j. K of X i X j physically 

implies that it gives a similarity in the transform stress that is it gives the similarity between φ 

of X i and φ of X j, what is φ of X i and φ of X j?  

 

Φ of X i and φ of X j is the vectors in the transformation the input vector centre transform 

space. So, K of X i as this gives the similarity in this transform space how does it give the 

similarity for similarity it takes the input attributes in the input space it takes the vectors in the 

input space. So, symbolically we can write R of m, R m it is transforms transform to R n where 

n is greater than m.  

 

Dimensionality n is dimensionality of m where here dimensionality is m it gets transformed to 

n dimensionality where n is greater than n and K of X i X j = φ of X i . φ of X j this is the 

formal definition of kernel function. So, now I think you can understand you understood what 

is kernel function and we have defined a formally same thing just a formal definition.  
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So, these are some popular kernel function. So, what we have just shown this was this kernel 

function this is a popular kernel function. So, we can use any of the kernel function now in a 

given set of data we do not know which kernel function will work properly. So, it will just we 

will try each and every kernel function if we already notice that of this type and accordingly, 

we will select a kernel function which is suitable for that data.  

 

But usually, it is very difficult to know data of which type we have our training data wafer 

observation but from the observation it is very difficult to make out it the data is of what type. 

Data is a linearly separable written a nonlinear separable or what type it follows which 

distribution nothing so, better find out try with all sort of kernel and then the kernel fish gives 

the best result that we will be using for our and for SVM of that particular data process.  

 

So, these are the different I am not going to the details of this so, these are the different kernel 

functions this is a functional form and it is wave what is used it is given here. You can go the 

each of the for learning each of the kernel function if you can just Google it and you can learn 

each and every kernel function.  
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So, and like here is the inner figure I have just shown what is what effect we get if we use the 

polynomial kernel. So, this is the polynomial kernel this p value, p value is again we can you 

can take any value you can take p 1 to any value which will have to do it and see which value 

will give the better result. So, in polynomial kernel this was initially our data was in this form 

now in the transform space if we see we got the data in this now which can be easily linearly 

separable.  

 

Similarly, if I use the sigmoid kernel if data is in this form my data got data has transformed to 

this space which is again linearly separable. Similarly, this this these are the different you can 

see this data if it is totally non-linear data if I use the Gaussian rbf 10 (()) (27:21) and radial 

based function kernel so it my data gets transformed this.  
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So, some properties of kernel function. So, other than the standard kernel function we can 

define of our own kernel as well as combining two or more kernels to another kernel. These 

are the standard kernel function we can define our own kernel function also. But our kernel 

function has to satisfy certain criteria just arbitrarily we cannot define it has to satisfy certain 

criteria and that way we can define our cone kernel function.  

 



Moreover, given a kernel function by joining two or more kernel we can have another kernel 

we do not know which kernel will work best for a type for class of for a what to say category 

for a group of data. So, if K 1 and K 2 are kernel then this also can be a kernel this also this 

also different combination where a b c is nothing as just positive real numbers. These are all 

these are valid kernels we can have some of this kernel in this way by using different constant 

a b c which belongs to the real number and positive space.  
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So, in kernel function used in non-linear SVM one of the requirements is that there must exist 

which I already talked basically. There must exist a corresponding transformation such that the 

kernel function computed for a pair of vectors is equivalent to the dot product between the 

vectors in the transform space. This is the main requirement of the kernel function for 

classification purpose what we need for classification purpose.  

 

What is the main requirement of kernel function is that there must exist so we have what we 

have seen and we are repeating it again and again there must exist a corresponding 

transformation such that the kernel function completed for a pair of vectors in the non-

transform space will give us the similarity in the transform space. Such that a kernel function 

computed for a pair of vectors is equivalent mark this term is equivalent to the dot product 

between the vectors in the transform space.  

 

This requirement can be formally stated in the form of Mercer’s theorem we have a theorem 

called Mercer’s theorem.  
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So, what does martial theorem says if kernel function K can be expressed as this if and only 

for any function g x any function g x you can normally is for any function g x such that 

integration of g x 2 dx is finite you can select any function g x but that it should satisfy this 

should be finite and this should be greater equals to zero. Then we as here we have seen that 

we can define our own kernels we can very well define our own kernel.  

 

But our kernel function should satisfy this it should satisfy the Mercer’s theorem what is this 

Mercers’ theorem this is the Mercer’s theorem it should satisfy this. The kernel's theorem which 

satisfy the Mercer’s theorems are called Mercer kernel.  
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There are some additional properties which will be seen here the kernel one thing is our kernel 

function should be symmetric that is the reason why we have computed half of the matrix 

within compute the other half. If you compute the half, we can get the other half. So, in the 

example what we have seen. So, that is one kernel function simple dot product so it has to be 

symmetry and it should be positive definite.  

 

What does positive definite means? Α to the power T K . α should be greater equals to 0 where 

α is this so, α T . K . α is greater equals to 0 where α belongs to this where K is a n cross n gram 

matrix. It can be proved that all the kernels that we have listed in table 2 this is the table two 



this is the table two oh sorry I did not mark it here table. So, anyway this is the table two are 

satisfying the kernel properties.  

 

And Mercer’s theorem enhance their Mercer’s kernel all the kernel function that we have 

mentioned all those are called Mercer’s kernel because they are satisfying the kernel properties 

water is properties these two properties and as well as the Mercer’s theorem.  
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So, now in coming to the end of it so what is the advantage of support vector machine. The 

support vector machine learning problem can be formulated as a convex optimization problem. 

We have seen it can be formulated as a convex optimization problem which we have solved it 

using then like then Lagrangian multiplier in which efficient algorithms are available. One of 

the efficient algorithm is like the Lagrangian multiplier to find the global minimum of the 

objective function.  

 

Other methods namely rule based classifier ANN classify etcetera finally local optimum 

solution. This things ANN classifier rule based classifier it finds optimal solution when we try 

to find out the classified machine SVM that function. So, it using this convex optimization 

problems and what we get we get the global optimum. Then SVM is best suitable for classify 

both linear as well as non-linear training data efficiently.  

 

Linear training data we have already seen non-linear trending determines using this kernel 

function it does it efficiently. SVM can be applied to categorical data also by introducing a 

suitable to similarity measures because category data we do not have those as such we do not 

have a value. So, we can introduce a suitability measures and accordingly it can be used for 

classification. Computational complexity is influenced by the number of training data we have 

already seen.  

 

Computation complexities very much depend on the input space it does not depend on the 

dimension of the space not the dimension of the data. In fact, learning is a bit computationally 

heavy because computational heavy means we do not know which kernel function will be best 

suitable. So, and during the learning function we may have to try different learning function 

and if we have to use the polynomial kernel.  

 



Then we have to use maybe we have to use on different values of p and find out which is best 

suitable and hence slow. So, learning is based a bit slow but once learning is done classification 

of text is extremely fast and accurate. So, these are the advantages of SVM.  
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With this we come to the end of this lecture today. We have learned about the importance of 

the kernel trick example of some popularly used kernel function we have also seen the 

properties of kernel function and finally we have also mentioned the benefits of the SVM 

classifier. So, with this as I told this is the last lecture of this course means from the discussion 

on point of view and will be signing up this course with a tutorial class and my next lecture.  
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Thank you, guys thank, you. 
 


