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Lecture – 16 

Sampling Distributions (Part 1) 

 

Hello, everyone. So today we are starting a new topic that is sampling distribution, it is a very 

interesting topic, I am sure all of you will enjoy doing this. So, the sampling distribution I 

will be taking in 3 different parts. So today I will be covering the first part and conjunctively 

the other parts.  
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So now in this lecture today, I will cover the basic concept of sampling distribution, then the 

uses why we need a sampling distribution, then I will talk about central limit theorem, a very 

well known theorem and of course, the application of the central limit theorem. 
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Now, as you remember, in our first class of statistics, latest from that is the second lecture, I 

have talked of statistical inference what is a statistical inference? If we can remember 

statistical inference if we talk about statistical inference, the main objective of statistical 

inference that what we use in most of our application is like given if we want some 

information about the population, we have definitely population is a big thing.  

 

So, if we want some information from population, what we do is that we get a sample from 

the population of course, the sample has to be an unbiased sample and from the sample we try 

to extract the different information, which based on this information, we try to predict the 

information about the population that is recall the statistical inference in a very broad sense. 

So now, in the when we talk of statistical inference, what we need to do?  

 

First we need to collect the data that is, as I told you, first we will have to collect a sample 

from the population what is sample, what is population this we have already discussed in my 

earlier lectures. Then from the sample, we will have to compute a statistics now, what is the 

statistics? In a population remember, we talked about the characteristics of the population 

when you talk about populations there, there are certain characteristics which define a 

population like it may be the mean it may be the variance. 

 

So the mean and variance these are this we basically called a parameters of a population, 

please remember this we called a parameters of the population. Now the counterpart of 

parameters and sample we call it statistics we know longer call it parameter, we call it 

statistics. So mean of a sample variance of a sample, we call it the statistics of the sample, 



rather than parameter of the sample but in case of population, we call it the parameter of the 

population.  

 

So once we collect the sample, the next job is we will compute the statistics from the sample. 

So, from the statistics, then we will make various statements concerning the different values 

of the population parameter. For example, we may talk about the population mean from the 

sample mean, if we get some we find out the mean of the sample from there, we will try to 

infer something about the population this is one sort of statistical inference. Likewise, there 

can be in many other statistical inferences, which you do for a population from a sample.  
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So, some of the basic terminology which are closely associated with the statistical inference 

basically, our population which I have already discussed and not be repeating here than 

sample then for it is statistical inferences already we know all this.  
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So, now, coming straight to this, there are 2 factors which are keys to statistical inferences, 

what are the first is population parameters are fixed numbers whose values are usually 

unknown. So population parameters, when you talk about suppose a mean of a population is a 

fixed parameter, but then it is really not possible to know the mean of a population like let me 

take a very small example suppose I am considering the some LED bulbs a company is 

producing a bulk of LED bulbs that light.  

 

So now, if we consider it a whole lot that lot that is the population. Now, if I want to find out 

the mean what to say mean lifetime of those bulbs, then it is really not possible to find out the 

mean lifetime of those bulbs, by considering the whole lot, because there may be say in 1 lot 

blub, 1 lot bulb is produced in a blub. So if I want to find out the mean lifetime. So I need to 

know the lifetime of all the bulbs.  

 

Then using whatever formula we have for mean you already known the formula for mean, 

using the formula for mean will have to tell the mean lifetime of the bulb, but that is nearly 

not possible. We cannot take the mean lifetime of all the bulbs. So, now so what is the 

remedy done sample statistics are known values for any given sample, but vary from sample 

to sample even taken from a very small population. So, now, we are interested in mean 

lifetime available.  

 

So, we really not possible for us to calculate the lifetime of all the bulbs and then find out the 

mean. So, what we do is that the normal procedure is that we take a sample from the 

population a small sample maybe and from that sample we try to find out the mean lifetime 



of the bulbs we take the lifetime of all the bulbs how do we take the lifetime of all the bulbs 

do a different experiment basically, maybe what is say we use the bulbs for quite a long till it 

goes bad.  

 

So, that definitely we cannot do of all the population we will take a smaller sample and from 

the smaller sample we keep the light on till it goes back and then from that we can find out a 

mean lifetime of the bulbs this is just an example of course, this is not the way to find out the 

mean lifetime of the bulbs there are different other techniques also to find out these values 

these statistics, so, I will not valid into those.  

 

So, now, if we take a sample from 1 sample suppose, I have taken a sample of 10 bulbs from 

10 bulbs if I take the lifetime and then I find out the mean I get a particular value say x. Now, 

suppose I take a different sample and then again I take the lifetime of those value when I take 

the mean I get maybe that is x 1, this x is not equal to x 1 there are very less probability that x 

will be exactly equal to x 1 there will be some variation between this x and x 1.  

 

So, this sample statistics so the second point that means, sample statistics we can know it we 

take a sample from the sample we can find out the sample size because this is a small number 

small amount, but then this small sample statistics vary from sample to sample even we have 

taken it from the same population. So, it is very unlikely that 2 samples drawn independently 

producing identical values of the sample statistics.  

 

So, the variability of sample statistics is that means always there. So as I told you in the 

beginning when I talk of statistical inference. Statistical inference means we will take a 

sample from the sample we will try to find out the statistics based on the statistics we will try 

to infer about the parameters of the population. Now, see the dilemma here the samples that is 

when we talk about the sample statistics, the sample statistics vary from sample to sample, I 

have taken a sample of 10 numbers.  

 

I have taken another sample of 10 numbers, the statistics we say get from this first sample, 

which I get from the second sample, it is very unlikely that I will get the same value. So, 

there are variations. So, if they are a variation then how do I do the statistical inference. So, 

that is the thing. So, this variation we must take into account this variation in this inferential 



procedure. So, how do we do that? So, this variability is called sampling variation, because 

variation around the samples so it is called sampling variations.  

 

Now, see when we talk about this say population mean only sample mean so, we take a 

sample we get a mean another sample we get another mean say first sample mean I got a x 1, 

we take another sample, we got the same mean x 2, we take another sample say, we got mean 

x 3. So, this sample mean will be different and the probability of getting this value is different 

there it is also different.  

 

So, now remember what is probably a distribution? Probability distribution is nothing but the 

value that a random variable will take. And the probability of those random variable these 2 

things, if we put together it is the only problem the distribution Now, here what our sample 

mean or variance or whatever statistics we consider. So, this sample statistic is a random 

variable, because it may take different values, it is not that it will take a fixed value, so it will 

take different value. So, our sample mean is a random variable. 

 

And since this is a random variable, we can also have its probability of occurrence. So, these 

2 things put together this sample mean, it is a random variable. And since it is a random 

variable, it has different probability of occurrence. So, considering these 2 things together, we 

can have a probability distribution of that. So, this probability distribution is nothing but it is 

called a sampling distribution. So that is it that is the distribution sampling distribution is 

nothing but a probability distribution only.  

 

But it is a probability distribution of the sample statistics that is also a random variable. Now 

what is this random variable? This random variable is a sample statistic that is why we call it 

a sampling distribution.  
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Now, this distribution so, when we have a distribution what is the use of probability 

distribution I have talked already remember why we need to study probability distribution 

one of them important objective of studying probability distribution is that we can find out 

the different values that are random variability and with this what we can find out? We can 

find out the probability of occurrence of a particular random value.  

 

So, because now we have for the sample mean or the sample statistics, let us not take mean 

because there can be any other statistic for the sample statistics now, since when we have a 

distribution. So that means we from this distribution, we can use to describe the variability of 

the sample statistics what are the different values that sample may take as well as this 

probability of occurrence.  

 

So, the definition of sampling distribution, the sampling distribution of a statistic is the 

probability distribution of that statistic. So, probability distribution of sample mean, we 

remember for the population mean, how do we designate the population mean we denote by 

mu you remember and population variance removed we denote by σ 2. So, similarly for 

sample mean we will no longer use mu rather we will use either X bar or Y bar general 

convention is using X bar in some books you will also find using Y bar.  

 

So that is the general convention of using denoting sample mean. So, now when we do the 

distribution of X bar that is a sample mean then we call it as a sampling distribution of the 

mean. So, the probability distribution so say this line the probability distribution of the 

sample mean is called the sampling distribution of the mean. So this if we find out the 



probability distribution of sample mean that we call it a sampling distribution of the mean 

similarly, the sampling distribution of the variance also we will discuss later.  

 

So, sampling distribution of variance, we will be discussing in the next class, this class we 

will continue our discussion on the under sampling distribution of mean. So, using the values 

of this X unlike for population variance, we use the term σ 2. Similarly, for sample variance, 

we use the term S 2 this is the population sample mean it is X bar Y bar for sample variance 

we use S 2 and all the books you will be finding it is denoted by S 2.  

 

So, using the values of X bar and S 2 for different random sample of the population, we are to 

make inference on the parameters of population that is parameters μ and σ 2 so that is 

statistical inference.  
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Now, how we make the sampling distribution because infer about a population we need to 

have the sampling distribution because just taking 1 sample will not do because, by them as 

we have already seen the sample statistics differs from different samples. So, that is why we 

need the sampling distributions once we have the sampling distribution then only we can 

infer about the population. Now how to have the sampling distribution?  

 

So to like be, we have learned about probability distribution remember, we have learned in to 

have a probability distribution what we need? We needed different values that a random 

variability as well as the probability of occurrence of those values, what is the probability of 

occurrence? Probability of occurrence is nothing but the relative frequency is not it? A 



relative frequency of occurrence. So now similarly so how we will construct a sampling 

distribution so given a population.  

 

So, what we will do? We will take as many sample as possible given a say big population 

from there suppose, we take a population initially suppose, we took a population say first 1 

sample from there suppose, we got a mean of X 1 bar then again X again we took another 1 

sample and different set of sample say we took sample mean X 2 bar another again we take a 

third sample for the suppose we take with likewise we suppose took different samples from 

different samples we found different means.  

 

So, it may be that again there may be some samples which made mean value maybe same So, 

based on this we can find out what is the relative occurrence of this sample mean relative 

occurrence of X 1 bar, relative occurrence of X 2 bar, relative occurrence X 3 bar. So, 

relative occurrence of that particular variable what is that that is nothing but the probability 

that so, with this we can calculate that we can, what to say develop the sampling distribution.  

 

Now for a huge population, is it really feasible to take out all sub samples and then find out 

the sample statistics? It is really not possible we may miss out on some sample. So, we do not 

have to do that many researchers have already done that and based on that, they have already 

come up with some based on different empirical study they have already come up with some 

theorem. Now, I go to the theorem later, but firstly just to see how the researchers have come 

up with different theorems for that, I will just take a small example.  

 

First of all, the sampling distribution of the statistics depends on what it depends on the type 

of the population, whether the population is normal distribution or totally not normal 

distribution or near normal distribution or some other distribution, why I am stressing on 

normal I will come to that again. It also depends on the sample values it also depends on the 

size of the sample, it also depends on a method of choosing the samples whether the sample 

is a bias sample or a non bias 1.  
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So, what is a bias sample, what is a non bias sample? I have already discussed. Now, coming 

to the example how we will find out the sampling distribution let us take a very small 

population suppose and we are considering a population where there are only 5 identical 

disks, this disks are numbered say 1, 2, 3 and 4 and 5 identity this is my population, that is 

very small population. So consider an experiment consisting of drawing 2 disks, replacing 

first before drawing the second what?  

 

I will draw 1 disk I am replacing that and I will draw it again second one the maximum is 

what to say drawing 2 disks and then computing the mean of the values of the 2 disks. My 

interest is I want to compute the mean of the values of the 2 disks. Why I am doing that, my 

main objective is to find out the mean of the population. Of course, since this is just a 5 value, 

so we can I can very easily find out I mean, my if there is a population of huge number, it is 

really not possible to know the mean.  

 

So here, let us not take it that way let us take this is a population, my intention is to find out 

the mean of the population somehow this mean of this population, I will try to find out by 

taking a sample. So what is my sample? Sample is 2 disks. So, how I am picking 2 disks, I 

am picking 1 disk and I am replacing it back again, I am picking the second disk, so I am 

replacing it back that is the way I am picking 2 disks.  
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So, this way, I am picking the disk see what these are the different samples I may get the total 

5 samples the different possible samples, these are the samples you can see these are the 

different possible samples all possible here I have because this was a small population, it was 

possible for me to find out all possible values. So, I found that the all possible values of the 

sample these are my different way how I can pick 2 values 2 disks? 

 

Now, what I have done is that so, if I pick knows see this, first of all consider does this 5 

identical this picking 1 and replacing it. And again, I am picking 1, what is the probability of 

this picking, what distribution is first? This is definitely a uniform distribution is not it? It is 

same as rolling a die and coming which value is coming on the top it is the same thing. So it 

is very much a uniform distribution. So, uniform distribution, what is the probability f(x) is 1 

/ K where K is the total number of digits. So here what is the probability 1 / 5.  

 

Since this is a uniform distribution, so now in a uniform distribution, can you remember what 

the how do we calculate the mean and the variance? So if considering this as the population, 

so if I need to calculate the mean, what is the uniform distribution calculation of mean if you 

can remember, μ= K + 1 / 2. Is not it? μ= K + 1 by 2. So what is here K? K is 5, 5 + 1 / 2 that 

is μ= 3 for this population that means my μ= 3 since a small populations I knew all about so I 

could find.  

 

So, what is my variance of this population variance formula if you can remember K 2 - 1 / 12 

variance formula we have discussed into when we have discussed any uniform distribution if 

we put the value of K as 5, so, what do I get? So, it is this I will be getting equals to 2. So, my 



μ= 2 for this population my μ= 3 and my σ 2 is equal variances = 2, that is for this population 

μ= 3 σ 2, because this is a uniform probability distribution that is now come to the sample 

what sample we have taken?  

 

We have picked out all possible values of the sample all possible samples taking 2 together, 

these are, there is no other way by which we can pick 2 samples, there is all the possible 

scenarios are jotted down here then from all of these 2 samples, I tried to find out the mean. 

So, 1 and 1 if I pick 1 and 1 that is the mean. Mean is definitely 1 if I pick 1 and 2 mean is 

definitely 1.5 1 + 2 divided by 2 is not it? It is definitely 1.5 definitely I found that the mean.  

 

Now, if this is the case, if this is the sample this is the mean we know what is the formula for 

mean? In a probability distribution given a probability distribution when the distribution is 

specified, whether it is uniform distribution, binomial distribution or whatever distribution 

whenever distribution is specified, then we know for each specific distribution, what is the 

value of the formula, but actually what is the main formula? Main formula μ is x f(x).  
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What was mu of X? μ of x is summation of x f(x) is not it? This is how we find out that mu 

and mu have a distribution. And by putting values in this x and f(x) that how we have 

simplified and I found out different formula for different distribution, but this is the 

generalized formula for μ x is this and similarly, we have the general formula for sigma 

square as well remember is equal to summation of (x – μ) 2 f(x).  
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So, now, this whole thing this whole table, if we want to put it in a form of a thing, what is 

that histogram that means if you want to put it in a form of a probability table, see how we 

can put it say this is the different values of what we got here the different values the mean 

takes the different values, we found out the different values mean can take this all these are 

the different values that mean can take there are no other values.  

 

So, what is the probability that mean takes value 1 we have taken the relative frequency. So, 

relative frequency how much is the time that a mean takes 1 see here mean takes 1 that is 

only 1 value is there only once and how many total combinations there are total 25 

combination. So, what is the relative frequency distribution is 1 / 25. Similarly, for 1.5 we 

found what is 2 / 25 this is how we found out this is nothing but the probability distribution 

this is in a tabular form, is not it?  

 

This is nothing but the probability distribution in a tabular form, this is the X bar is a random 

variable f(x) bar is nothing but the probability of X bar. This we can see it in the form of a 

histogram also, this is the histogram of this corresponding data. Now, given this distribution, 

if we find out the mean, because I do not know what distribution it is, I do not know whether 

it is uniform distribution, normal distribution, this distribution I do not know what 

distribution if I want to find out the mean.  

 

Then what is the formula for mean the general formula? General formula as I told is mu is 

equal to summation of x f(x). So, if I do x f(x) μ = ∑ x f(x), x = x goes from 1 to n. So, x of 

f(x) means 1 x 1 / 25 + 1.5 x 2 / 25 + 2 x 3 / 25 + 5 x 1 / 25. You can calculate this and you 



will find that you will get 3.  If you calculate this you will get 3 similarly, if you calculate the 

variance formula what this summation of (x – μ) 2 f(x).  

 

So, if you calculate that σ 2 you will get that 1 I have done a mistake here. And since this is a 

we are talking of in terms of sample, so, I will not use the term μ and σ 2 what I will use 

remember and use X bar and here I will use S 2 because this is in terms of a sample, this is 

what I got in terms of for this probability distribution.  
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And this distribution you can also see from the table this is the table when we have drawn the 

histogram, but we have seen this distribution almost resembles a normal distribution, what is 

the normal distribution how is the normal distribution curve is this and this distribution also 

this figure also resembles a normal distribution. So, what we got from this calculation when 

we took all possible samples our sample of size 2 even if you take sample of size 3 whatever 

it is.  

 

We know, for this explain suppose, we took all possible sample when we took all possible 

sample and we found out the probability distribution and this probability distribution very 

much resembles a normal distribution and thus the mean of this distribution we got 3 

remember this population mean was also 3 K +  1 / 2 this is a uniform distribution that also is 

equals to 3 we found and this variance we found 1 and what was from this population, what 

was the variance we found variance 2 here we found variance 1.  

 



So how is this link? Let us see here. So, this distribution closely resembles a normal 

distribution, our parent population has uniform distribution, is not it? Our parents population 

was very much a uniform distribution from this uniform distribution, we have taken a sample 

of 2 items and the resulting distribution that we got is our, this is a sampling distribution is 

not it? This resulting distribution is very much a normal distribution. And the mean of the 

distribution of X bar value is 3 and the variance is 1 if we calculate using the formula x of x, 

(x – μ) 2 f(x).  
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So, what we got? The sampling distribution of X bar from a random sample of size n drawn 

from a population with mean mu and variance sigma square will have mean X bar = μ and S 2 

= σ2 by n is not it? That is what we got for these experiment what we got? We got our X bar 

= μ, our populations mean was also 3 our sample mean also we got 3 that means our X bar = 

μand variance S 2 variance of the sample we got 1, what is the variance of the population of 

2? 

 

So, how we will get that means sigma square that is variance of the population divided by the 

size of the sample, what is the size of the sample? Size of the sample is 2 so 2 / 2 = 1. So, this 

is a very important theorem, this is sampling distribution of mean this is this we got for this 

experiment. Similarly, the researchers then experimenters they have done empirical study on 

many subpopulations.  

 

Of course, infinite population, they cannot do they have done on very small population, 

medium population, large population they have done and from all those empirical 



experiments, they could come up with this theorem this very important theorem, I am reading 

the theorem again the sampling distribution of X bar what is X bar? X bar is a sample mean 

X bar from a random sample of size n drawn from a population with mean mu and variance 

sigma square will have mean X bar = μ.  

 

And variance sigma square S square = sigma square by n this is called a sampling distribution 

of mean. So, now, with reference to the data from what we have uniform distribution already 

I have shown you we got μ = 3 σ2 = 2. So, our theorem is basically proved we could prove 

this theorem basically, we already know that theorem and we have done an example to prove, 

but actually the researcher has done many experiments together and they could come up at 

last they could come up with this theorem, this is called sampling distribution of mean.  
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So, this theorem on sampling distribution is also true if we sample from a population with 

unknown distribution, this is what this population what we have considered this is a very 

much a known population, we know that it is a uniform population, even if we sample from a 

very much unknown population also the sampling distribution of X bar will be approximately 

normal we have seen it is approximately normal this size the sampling distribution of X bar 

will be approximately normal with mean μ and variance σ2 by n.  

 

So, this further can also be established with the famous central limit theorem this another 

theorems central limit theorem, this is basically again similar based on same set of 

experiment one most stronger theorem than the sampling distribution and sampling 



distribution theorem, we see the sampling distribution theorem here it does not speak about 

the shape of the sampling distribution say this is the sampling distribution of mean.  

 

The sampling distribution of X bar from a random sample of size n drawn from a population 

with mean μ and variance σ 2 will have a mean X bar = μ and variance as far as well as σ2 / n. 

It does not speak about the shape of the sampling distribution remains silent on that. So, but 

already we have seen we have seen the sampling distribution take same normal shape.  

 

So, central limit theorem is a more stronger definition than sampling distribution, it also talks 

about that. So, what is the central limit theorem say this is a central limit theorem, the very 

important theorem, if random sample each of size n are taken from any distribution with 

mean μ and variance σ 2 μ and σ 2 is the parameter of the population the sample mean X bar 

will have a distribution approximately normal with mean μ and variance σ 2  / n, yes 

everything same.  

 

But here also it talks that a distribution is approximately normal. So, it is irrespective of the 

parent population whether the population your normal population, binomial population, 

normal population whatever population it is, but this theorem it satisfies this theorem, but 

there is another twist to it that means, if the population this approximation becomes better as 

n increases this is approximation. This approximation mean is value of μ and value of X bar 

and S.  

 

But the size or the shape that shape I told that errors distribution is approximately normal that 

distribution is approximately normal distribution becomes better as n increases for very small 

value of n, we may not get a normal distribution, when the n becomes more when n is 

becomes greater than definitely we will get a normal distribution.  
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But here, there is another twist to it also see the different points the see all the points are very 

important, please look carefully that this theorem is an asymptotic result that means being 

exactly true only if n goes to infinity when our sample size becomes large, this theorem is 

exactly true. However the approximation is usually very good for quite moderate values of n. 

Sample sizes required for approximation to be useful depend on the nature of the distribution 

of the population.  

 

Now, when I told that is when the sample size goes to infinity, this approximation is very 

good again in fact, it is exactly true when sample size goes to infinity and even for a 

moderate values of n also this approximation is very good. Now question that arises what 

should be the sample size? So, this approximation depends on the distribution of their parent 

populations. If my parent population is normal with my parent population from where, I am 

taking the sample.  

 

If my parent population is normal, then we do not need a very bigger sample size and a small 

sample size will also do but in the population is a bit away from normal it is not normal, but a 

bit totally not normal, but a bit away from normal then we need a moderate value of n, but it a 

population is very much skewed then we need a very big value of n. So, population that 

resembles a normal sample size of 10 or more are usually sufficient if it is normal or if it 

resembles normal not exactly normal.  

 

Sample sizes in excess of 30 are adequate for virtually all population unless the distribution is 

extremely skewed. It does distribution is extremely skewed then we need a very big sample 



size maybe to tune of say 100 if the population is normally distributed, the sampling 

distribution of the mean is exactly normally distributed regardless of the sample size. So, I 

there are a few more points to be discussed about this sampling distribution about this central 

limit theorem basically. So I end this lecture here. In the next lecture, I will cover those 

things. Thank you. 

 

 


