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Hello everyone, welcome to lecture 38 of this course on Machine Learning for Earth System
Science. We are in the last module called module 5, where we are dealing with how machine
learning can help in earth system modeling. The topic of this lecture is Parameterizations for

Sub-Grid Processes Using Machine Learning.

(Refer Slide Time: 00:43)

CONCEPTS COVERED

» Representation of sub-grid processes in ESMs

» ML emulators for re-parameterization of process models

So, we will basically discuss what are these sub-grid processes, how they are like modeled in
earth system models and how machine Learning based emulators for can be helped in like
re-parameterization of these sub-grid processes in the different process models. So, machine
learning emulations we have been dealing with for the past 2 lectures and so we will see a

concrete application of why this emulation can be useful. In the like in Earth System Modeling.
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Problem with unresolved processes in Earth System Models

» Atypical Global Climate Model today works at a resolution of 100Km

» One of the largest contributions to simulation uncertainty in global climate models is dug
to representation of clouds and convection occurring at scales smaller than the model
grid resolution

» Possible solution: high-resolution models that explicitly resolve clouds,
convection using Large Eddy Simulation

» Required resolution: only few kilometers, very expensive (infeasible on a
global scale madel)

» Solution: Use Machine Learning instead of explicit modelling!

Now, when we are developing earth system models there are like the we have a major problem
with what is known as unresolved processes. Now, a typical global climate model works at a
resolution of 100 kilometers which can be considered as reasonably coarse resolution. But where
it is often found that if we like these kinds of global models are developed by different research

groups.

Now if we run these models the models from the different research groups or even if we run the
model from the same group under slightly different initial conditions, we see like very different
results coming out of it. I mean certain broad trends might be preserved, but as far as details are
concerned we see lots of uncertainties. Now why is this happening? That is because like these

models they work at a certain resolution as already mentioned.

But there are certain like all of all earth the earth system also involves various localized
processes which occur at a lower or at a lower scale than the resolution of these models. So, a
like these most of these are related to clouds and convections, because these are things which
these are processes that occur typically in a few kilometers. So, model which works at the
resolution of 100 kilometer is not able to handle these specifically. So, these are called as the

unresolved processes.



So, the problem is these kinds of unresolved processes are like they are handled in the different
models in different ways usually as some kind of parameters which take these into account. But
the parameters are of course different in the in different models or and so on. Besides the like if

we can just these processes they have their own complexities they are time-varying and so on.

So, just replacing them by a single parameter is unlikely to be very effective, that is why these
kind of like we see some various biases in the simulations, that is they the bias usually means
some kind of losses of the spatio temporal variability. Like it like the even if the mean value of a
particular variable is produced well by these models, they are unable most often they are unable
to capture the variance; that is because of the presence of such because they do not take into

account the these unresolved processes.

So, how to solve the problem? The solution the obvious solution is of course, to build high
resolution models that explicitly resolve these processes like the clouds. So, there are cloud
simulation models which are like which the scientist of which of fluid dynamics they deal with.
So, there is something known as large eddy simulation numerical models, where the like
formation of clouds and how they the clouds resulting precipitation all these things are explicitly

simulated.

But these are like very expensive and like because they require like because their resolution is
only a few kilometers. So, like for a 100 kilometer by 100 kilometer region we have to develop
lots of these kinds of simulations each of which is very expensive. So, like if we have to do the
do the same process at a global scale that is for every say 5 to 10 kilometer or 5 kilometer by 5
kilometer region on the earth surface we need to run a large eddy simulation parallelly that is

going to take like so much computational resources that no one can afford that.

So, the solution is to somehow use machine learning instead of explicitly modeling these kinds

of cloud operations.



(Refer Slide Time: 05:08)

EMULATE TO REPARAMETERIZE

HIGH-RESOLUTION
CLOUD-RESOLVING

LOW-
RESOLUT
-ION
GLOBAL
CLIMATE
MODEL

ML MODEL

LOwW-
RESOLUT
-ION
GLOBAL
CLIMATE
MODEL

ML-BASED
" REPARAMETERIZATION
7

So, the broad idea is like this. So, suppose we have a low resolution global climate model. So,
these are some of the different variables. So, let us say that these are some variables which

influence the clouds and these are some other variables which are impacted by the clouds.

Say for example, the temperature over the sea is result in convection and which in turn helps in
the formation of clouds and let us say these variables the amount of precipitation or the ground
water etcetera these are the results of clouds and or the outgoing long wave radiation. So, all
these variables so the input variables and which help in the or which influence formation of
clouds and the output variables which are influenced by the clouds. So, these are all part of the

low resolution model.

So, these what happen like what can be done is these input variables from the we as simulated by
the low resolution earth system models can be fed as inputs to a high resolution cloud resolving
model. So, it will like simulate the cloud processes at very high resolution. Now that will be
coarsened and the outputs of that will be I mean the cloud the cloud simulations are very high

resolution that will be coarsened and presented to the earth system models.

So, that the variables which are the effects they can be updated accordingly. Now the problem

here is the is this part the large the cloud simulation which is done through some kind of large



eddy simulation and the further the coarsen. So, these are the things which are causing the

computational bottleneck.

So, the approach is going to be use machine learning to emulate this cloud the cloud simulation
models. So, we have seen in the previous lecture that machine learnings models can emulate
various kinds of physics based processes process models, in this case also we will produce the
like we will use it. So, that the whole thing becomes like this the input variables are or the cloud

causing variables will be produced provided as inputs to the machine learning model.

The machine learning model will directly simulate the or the predict the values of the output
variables and those predictions will be fed back to the low resolution global simulation model.

So, as to do away with the need of explicit simulation and coarsening of the of the cloud process.

(Refer Slide Time: 07:43)

Machine Learning to emulate Cloud-resolving Models

» Machine Learning can emulate cloud process simulations by Cloud-Resolving Models
(CRM)

» Aim: coarse-graining the high-resolution CRM to the resolution of GCM
» ML model estimates heating and moistening rates at GCM resolution

Y
» MLinput: vertical temperature T(z), specific humidity q(z), surface pressure PS,
solar insolation SO, surface sensible flux H, and latent heat flux LE

» ML can also predict turbulence, radiation, waves, and shallow convectio!

So, the machine learning it has been seen in research can emulate the cloud process simulations
which are obtained by these CRM or the cloud resolving models. So, the aim is the coarse
graining of high resolution CRM to the resolution of the GCM the low resolution 100 kilometer
by 100 kilometer at which the typical GCM works.

And the so the like there are certain research papers which where ML models are used for

estimating the different effects of the clouds, which include heating and moistening rates. And



these heating and moistening rates as emulated by the ML model they are fed back to the low

resolution GCM for further processing.

So, the inputs to these models is the like either the cloud resolving model or the emulating
machine learning model these are the input variables are the vertical temperature, the specific
humidity, surface pressure, solar insulation, surface sensible flux, latent heat etcetera. All of
these help in determining the heating and moistening rates by convection, Like I like in case of

these cloud resolving models such as the large eddy simulation and so on.

So, the same variables are also provided as inputs to the machine learning model. Now and this
machine learning model provides it is using these inputs it provides this or it estimates this
heating and moistening rates, it can also predict the other things like turbulence radiation waves

shallow convection etcetera.
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Could Machine Learning Break the Convection
Parameterization Deadlock?

P. Gentine' (", M. Pritchard® ", S, Rasp® |, G. Reinaudi', and G. Yacalis®
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Abstract Representing unresolved moist convection in coarse-scale climate models remains one of the main
bottlenecks of current climate simulations. Many of the biases present with parameterized convection are strongly
reduced when convection is explicitly resolved (i.e., in cloud resolving models at high spatial resolution
approximately a kilometer or so). We here present a novel approach to convective parameterization based on
machine leaming, using an aquaplanet with prescribed sea surface temperatures as a proof of concept. A deep
neural network is trained with a superparameterized version of a climate model in which convection is resolved
by thousands of embedded 2-D cloud resolving models. The machine learning representation of convection,
which we call the Cloud Brain (CBRAIN), can skillfully predict many of the convective heating, moistening, and
radiative features of superparameterization that are most important to climate simulation, although an
unintended side effect is to reduce some of the superparameterization’s inherent variance. Since as few as three
months’ high-frequency global training data prove sufﬁciqgt to provide this skill, the approach presented here
opens up a new possibility for a future class of convection parameterizations in climate models that are built
“top-down,” that is, by leaming salient features of convection from unusually explicit simulations.

So, there is a bunch of papers on this matter. So, the first paper here the name is quite interesting
here could machine learning break the convection parameterization deadlock. So, this paper
appeared in 2018 when the researchers were just exploring this the possibility of using ML to
emulate these CRMs. So, representing unresolved moist convection in coarse scale climate

models remains one of the main bottlenecks of current climate simulations.



Many of the biases present with parameterized convection are strongly reduced when convection
is explicitly resolved that is in cloud resolving models at high spatial resolution approximately a
kilometer or so. We here present a novel approach to convective parameterization based on
machine learning using an aquaplanet with prescribed sea surface temperature as a proof of

concept.

So, this aquaplanet it is basically I is a simplified model for the earth which is used in various
earth system models. A deep neural network is trained with a super-parameterized version of a
climate model. The super-parameterized version of a climate model means this like basically this
the like this the this is the climate model and including this CRMA that is known as the super

parameterized model.

So, the a deep neural network is trained with a super parameterized version of a climate model,
in which the convection is resolved by thousands of embedded 2D clouds resolving models just
as I mentioned earlier. The machine learning representation of convection which we call a cloud
brain can skillfully predict many of the convective heating moistening and radiative features of
super parameterization that are most important to climate simulation. Although an unintended

side effect is to reduce some of the super parameterization inherent variance.

So, like this also I mentioned earlier the a simulation of the variance is often a big problem in
regardless of what simulation methodology we are using. So, the like if we go for like very
explicit process-based simulation we might be able to get the actual variance. But if we are going
for any kind of like emulation or some less or I mean or typically any kind of statistical

simulation.

In fact, the problem is in reproducing the variance since as few as three months high-frequency
global training data prove sufficient to provide the skill, the approach presented here opens up a
new possibility for a future class of convection parameterizations in climate models that are built

top down. That is by learning salient features of convection from unusually explicit simulations.
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So, these are the various input variables which they are providing to the machine learning model
for emulating the cloud CRMs. So, the so like as you can see most of these are at different
vertical levels that is the convection is of course as you can understand it is not something that
happens only on the surface wave. But rather it is related to the evaporation of water from the
surface rising there the evaporated water rising up and to a high altitude and forming clouds and

SO On.

So, like we have so like the vertical profile is of different variables is important for this. So, the
input variables include the temperature at different vertical levels, the humidity at different
vertical levels, the surface pressure, the sensible heat flux, the latent heat flux these are of course

more relevant only for the surface.

The temperature tendency from the dynamic, the humidity tendency from the dynamics, the
incoming solar radiation and so on and then of course there are the machine learning based

parameters which are with the stack as the how many layers will be stacked and so on.

The outputs are going to be the convective and turbulent temperature tendency at all the 30 levels
or 30 vertical levels; similarly the convective and turbulent humidity tendencies the long wave

heating as well as the short wave heating all at the all at all vertical levels. So, like here like for



convective moistening at a given at 600 hPa means like at the at a. So, this basically specifies a

particular altitude.

So, we know that hPa hectopascal is the unit of pressure. So, we know that pressure decreases as
we go higher and higher up. So, 600 hPa is that altitude at which this kind of this pressure this
particular pressure is achieved. So, at that particular altitude if you look at the convective
moistening rate and as well as the convective heating rate, like we can like what we get
something from the cloud resolving model and we get something from the neural network the

emulating network.

So, here in both cases both for moistening and for heating this is the map. So, like this is
basically the worlds map, worlds map at that particular altitude. So, here you can see the values
produced by the CRM and here we you see the corresponding values emulated by the neural
network. So, as you can as it appears like these 2 maps are near identical, the same thing for the

convective heating also.
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And similarly in case of like if you consider the vertical profile at different. So, like in this case

the so here we can see here we are focusing on a particular altitude, but we are capturing



considering all latitudes and longitudes. Of course, the whole thing is 3 dimensional, so we are

we cannot of course on the on the screen we cannot build a 3 dimensional map.

So, we are building 2 dimension by either keeping 1 dimension as fixed or by averaging over that
dimension. So, in this case we are keeping the altitude dimension as fixed, in this case we are
keeping like the longitude we are actually averaging over all the longitudes and also over time.
We are just plotting latitude versus altitude and instead of like measuring altitude directly in

terms of meters or something we are like measuring it in terms of the corresponding pressure.

So, at every location which is a combination of latitude and altitude like we are again studying
this convective heating rate and the convective moistening rate as we did here also. And so like
these are the like these are not the actual values, but these are the what is known as the R? and
the standard deviation. So, R* is basically it is like 1 minus the squared error divided by the

standard deviation.

So, like basically the smaller this value is the better we can say the like so sorry the that is if the
a the closer to 1 this value is we can say the better the simulation has been. So, like we can see
that in all these places the value of this R* is quite close to 1 and which indicates that a like for

the most part the emulation has been quite successful.

And like similarly we can also study the like the variation of R* over a different altitude levels
for the different variables that are being emulated. So, we can see especially for this short wave
heating rate the R? is always for all altitudes it is right from the ground to the top of the
atmosphere it is like close to 1; which means that this is like in this case the simulation has been

best.

In this case for the convective moistening rate unfortunately we see the R? value is actually quite
poor near the surface, it improves a bit like as we go higher. But then beyond a particular altitude

this again becomes bad, the others other 2 are like we can see in between.
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Using Machine Learning to Parameterize Moist Convection:
Potential for Modeling of Climate, Climate Change,
and Extreme Events

Paul A. O‘Gorman'’ ' and John G. Dwyer'

! Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA. USA

Abstract The parameterization of moist convection contributes to uncertainty in climate modeling and
numerical weather prediction. Machine learning (ML) can be used to learn new parameterizations directly
from high-resolution model output, but it remains poorly how such i behave
when fully coupled in a general circulation model (GCM) and whether they are useful for simulations of
climate change or extreme events. Here we focus on these issues using idealized tests in which an ML-based
parameterization is trained on output from a ion and its e is assessed
in simulations with a GCM. We use an ensemble of decision trees (random forest) as the ML algorithm, and
this has the thatit ensures co of energy and gativity of surface
precipitation. The GCM with the ML convective parameterization runs stably and accurately captures
important climate statistics including precipitation extremes without the need for special training on
extremes. Climate change between a control climate and a warm climate is not captured if the ML
parameterization is only trained on the control climate, but it is captured if the training includes samples
from both climates. Remarkably, climate change is also captured when training only on the warm climate,
and this is because the extratropics of the warm climate provides training samples for the tropics of the
control climate. In addition to being potentially useful for the simulation of climate, we show that ML

izations can be i to provide di ics of the i d s tion and
the large-scale environment.

So, this is one paper now another paper on roughly the same topic using Machine Learning to
Parameterize Moist Convection Potential for Modeling of Climate, Climate Change and Extreme
Events. So, in this case the model they have used is different in this case they have used random
forest instead of neural network. By the way in this case the model they used with though I did
not specify, it is basically a fully connected feed forward neural network with 2 to 8 hidden

layers that is they have considered different versions.

So, one is a like a shallow neural network with only 2 hidden layers another is a deep 1 with 8
hidden layers, but it is fully connected no convolution or things. Like that the in so in this case
the parameterization of moist convection contributes to uncertainty in climate modeling and
numerical weather prediction. Machine learning can be used to learn new parameterizations

directly from high resolution model output.

But it remains poorly understood how such parameterizations behave when fully coupled in a
GCM and whether they are useful for simulations for climate change or extreme events. So, we
have seen that they can emulate the these CRMs quite well, but how about say the climate
change I mean we know that there is a secular increase of temperature over the over the years

irrespective of local processes.



Then apart from that there is also there are also extreme events. So, how are these extreme events
and the general climate change, how they are modeled how these can be in like estimate or how
these can be captured if we go for emulation of this of these GCMs by the. I mean if we try to

super parameterize these GCMs and then try to emulate them using the machine learning.

So, here we focus on these issues using idealized tests in which an ML based parameterization is
trained on output from a conventional parameterization and its performance is assessed in
simulations with a GCM. We use an ensemble of decision trees or random for as the ML
algorithm and this has the advantage that it automatically ensures conservation of energy and non

negativity of surface precipitation.

The GCM that so like this conservation of energy and non negativity of surface precipitation
these are of course, physical like physical constraints which follow from physics. So, if we use
the physics based neural network these are constraints which you would enforce on the values
that are being predicted. So say for example the predicted value of rainfall can never be negative
that is some a constraint which we would have to enforce if you are using some kind of using the

PINN concept.

But in this case they are using random forest and like they are although they are saying that they
these are not these are constraints are not explicitly imposed, but because the random forest
predicts by taking averages over the training set. So, if in the as in the training set this constraint

are satisfied anyway.

So, the idea is like when it makes a new prediction also this I will continue to be satisfied. The
GCM with ML convective parameterization runs stably and accurately captures important
climate statistics including precipitation extremes without the need for special training on
extremes. Climate change between a control variable, control climate and the warm climate is
not captured if the ML parameterization is only trained on controlled climate. But it is captured if

the training includes samples from both climates.

Remarkably climate change is also captured by training only on warm climate and this is because
the extratropics of the warm climate provides training samples for the tropics of the control

climate. In addition to being potentially useful for the simulation of climate we show that ML



parameterizations can be interrogated to provide diagnostics of the interaction between

convection and the large-scale environment.
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Moist-convective Emulation with Random Forest

» Aim: to train an ML-based parameterization on the output of a conventional
moist-convective parameterization: Relaxed Arakawa-Schubert (RAS)

» ML model: Random Forest, energy conservation not explicitly enforced
» Conservation found to be holding as the RF predicts as averages over training
examples (where it holds anyway)

¥ inputs to RAS are the vertical profiles of temperature and specific humidity as 3
function of pressure outputs are the tendencies of temperature and specifi
humidity

» Training data generated by running RAS over 3300 days (0.7 million
samples)

b

So, the aim, in this case, is to train an ML-based parameterization on the output of a like
conventional or a physics-based moist convective parameterization model which they are called
in which is called a RAS. The ML model in this case is the random forest and as I mentioned
already the energy conservation or the non-negativity of precipitation these are not explicitly

enforced.

But rather they are because it is a random forest which predicts by taking averages over the
training set, these are considered to be holding anyway. The inputs to the RAS are the vertical
profiles of temperature and specific humidity as a function of pressure output and the as well as

the tendencies of temperature and specific humidity.

So, the so these are the inputs to the RASthe physics-based the with the physics-based model
which we are planning to emulate using random forest. So, the training data is generated by
running this RAS over three 3300 days that is roughly 9 years or so and this way some 0.7

million examples are generated.
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Moist-convective Emulation with Random Forest

(a) Temperature tendency (b) Specific-humidity tendency 60 ’

10 Py

. 09 40 . gt‘ )
08 v K"

L 07 Latp
06 1

J 05
04 T T T T
03 0 20 40 60
02 RAS convection scheme (mm day™)

=60 =30 0 30 60 =60 =30 0 30 €0
Latitude (degrees) Latitude (degrees) O'Gorman et al, 2018

=

=

=
=

Random forest (mm day~?)
~

£ £

\?

Vertical level (<)

=
=

10

Figure 1, Coeffcient of Florth i { d tained on relaxed
Avakawa-Schubert ive tendencies in the | climate for (a) (o) specific humidity. Results are
plotted versus ltitude and verticallevel () since the underlying general irculation model s statistically zonally 1y

symmetric R samples from the test fth )l for agiven
laiitude and level), and itis only shown where the variance s at least 1% of the mean variance over allatitudes and

So, based on that the Random forest is trained, so like if you consider the different variables as
simulated by the process based model as well as by the random forest. So, here you can see this
is here we are considering the precipitation. So, the which is in measured in millimeters per day.
So, here you can see that there is a near perfect agreement between what is obtained from the

physics-based model and what is obtained from the ML model.

So, the daily precipitation is predicted with like almost perfectly. Now if you I mean this now if
you consider the temperature tendency and the specific humidity tendency again we go for the
latitude versus altitude plot as discussed earlier. So, like a like in this case also like we at the
different latitude comma altitude values we compare the R? between of what is of the values that

are predicted by the random forest model.

And like a high value of R? indicates that the error is nearly is nearly equal to 0 and as we can
see for large parts of the of this profile we can see the R? values close to 1 in other parts also it is
pretty high like above 0.7 so on. For both the temperature as well as specific humidity and it
seems a like only at certain places very high or near the polar region. So, these are the place this
is like we can say the South Pole region where the latitude is 90 degree South or here this is the

North pole where latitude is 90 degree North.



So, these places the thing these things have not been captured properly, but then these can be
considered as like these are outlier cases. But apart from that we can see for most of the like the
3D structure the tendency seem to be like the tendency as simulated by the RF model seems to be

almost agreeing with what is obtained from the RAS model.
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Moist-convective Emulation with Random Forest
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Figure 3. Statistics from a simulation of the control climate with the relaxed Arakawa-Schubert parameterization (black)
versus a simulation with the random forest parameterization (red dashed) and a simulation without any convection
scheme (blue). Shown are profiles of (a) tropical equivalent potential temperature versus vertical level (a), (b} tropical
eddy kinetic energy versus g, (c) zonal- and time-mean precipitation versus latitude, and (d) the 99.9th percentile of
daily precipitation versus latitude. Eddy kinetic energy is defined using eddy velocities with respect 1o the time and
zonal mean. The tropical equivalent potential temperature and tropical eddy kinetic energy are based on zonal and time
means that are then averaged (with area weighting) over 20° S to 20° N.

And these are like the other the other things or the other quantities that they have been simulated
like for example Extreme precipitation. So, here the aim is that this can this RF model they it can
predict the extreme values of precipitation quite well, even if it is not specifically trained to do so

and here they are actually showing that.

So, like so here the black is the what is the original scheme and the this red dash line is the
random forest. So, here you can see that the original scheme that is RAS and the random forest
these are like matching almost perfectly. So, here it is like the extreme values at the different
latitude; by extreme we may mean the block maxima or something like that, like we already

know the definitions of the different definitions of extreme.

So, like at different altitude sorry at different latitude, what is the maximum temperature [ mean
the maximum precipitation observed over this period. So, we see that it is almost matching in

both cases similarly for mean precipitation also we see that they are all matching. The interesting



thing is the this kind of symmetric structure which shows the precipitation is maximum around
the equator, it drops off and the 2 sides arises again near the tropics and then in the extra tropics

it gradually falls off in both hemispheres.

And this effect is captured almost equally by both the RAS as well as the random forest based
thing.
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A Moist Physics Parameterization Based
on Deep Learning

Yilun Han' (), Guang J. Zhang” (), Xiaomeng Huang' (", and Yong Wang'

'Department of Earth Sysiem Science, Tsinghua University, Beijing, China, *Scripps Institution of Occanography, La Jolla,
CA, USA

Abstract Current moist physics parameterization schemes in general circulation models (GCMs) are the
main source of bi in eci ion and ic circulation. Recent advances in machine
learning mak sible to explore data-driven approaches to developing parameterization for moist
physics proces uch as convection and clouds. This study aims to develop a new moist physics
parameterization scheme based on deep learning. We use a residual convolutional neural network (ResNet)
for this purpose. It is trained With 1-year simulation from a super ized GCM, SPCAM. An
independent year of SPCAM simulation is used for evaluation. In the design of the neural network, referred
to as ResCu, the moist static energy conservation during moist proc: is considered. In addition, the past
history of the atmospheric states, convection, and clouds so considered. The predicted variables from
the neural network are GCM grid-scale heating and drying rates by convection and clouds, and cloud liquid
and ice water contents. Precipitation is derived from predicted moisture tendency. In the independent data
test, ResCu can accurately reproduce the SPCAM simulation in both time mean and temporal variance.
Comparison with other neural networks demonstrates the superior performance of ResNet architecture.
ResCu is further tested in a single-column model for both continental midlatitude warm season convection
and tropical monsoonal convection. In both ca: imulates the timing and intensity of convective
events well. In the prognostic test of tropical convection case, the simulated temperature and moisture biases
with ResCu are smaller than those using conventional convection and cloud parameterizations.

p

Like similarly we have one more paper on roughly the same topic a moist physics

parameterization based on deep learning.
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So, here they have built a more sophisticated model like based on Resnets and so on. So, the
current moist physics parameterization schemes in GCMs are the main source of biases in
simulated precipitation and atmospheric circulation. Recent advances in machine learning make
it possible to explore data-driven approaches to developing parameterization for moist physics
processes, such as convection and clouds. This study aims to develop a new moist physics

parameterization scheme based on deep learning.

We use a residual convolutional neural network or Resnet for this purpose, it is trained with one
year simulation from a super parameterized GCM called SPCAM. This SPCAM is also the one
which was discussed in the first paper, an independent year of SPCAM simulation is used for
evaluation. In the design of neural networks referred to as ResCu the moist static energy

conservation during the moist processes is considered.

In addition the past history of the atmospheric states convections and clouds these are also
considered the predicted variables from the neural network are GCM grid scale heating and
drying rates by convection and clouds and the cloud liquid and ice water contents. So, these are
things that are predicted by the model by both the SPCAM as well as from the neural network.
The precipitation is derived from predicted moisture tendency in the independent data test ResCu

can accurately reproduce the SPCAM simulation in both time mean and temporal variance.



The comparison with other neural networks demonstrates the superior performance of Resnet
architecture an so on. So, this is like the machine learning model. So, like as you can see it is
called ResCu because it has so many of these of a residual units and then there are this. So, the
each residual unit basically looks like this. So, it is a it goes through a like a series of

convolutions but this identity mapping also.

So, there this skip each residual unit has this kind of skip connection, which is added to the
simulation to the convolution result and this same process is repeated 10 times. So, these are
some of the like the equations of the physics-based model which are to be which is to be
emulated. So, in this case going back to the like PINN approach. So, like in this case you can see
the loss function has been designed to actually see how much the or to what degree this equation

1s satisfied.

So, in like this becomes more difficult because to evaluate the loss function one has to do the
integration also and to do the integration like it is not straight forward. So, like basically this
derivative of the different things they have to be calculated as a function of time and then the
integration over the different pressure levels. So, dp means these are the pressure levels from one

level to another.

So, that is evaluating this loss function is a bit of a trouble, because so much of this automate

differentiation and integration needs to be done that is one challenge challenging This model.
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But the results are encouraging. So, here as you can see the precipitation in millimeter per day is
like the or the world map of precipitation in as obtained from the SPCAM as and as simulated by
the ResCu is are almost nearly identical. So, this is the difference map between the 2 things and
as you can see the differences are almost minimal. Except for some small region here near the

Himalayas or just in the Tibetan region I am not sure what is the reason for this problem here.

But apart from that simulation seems to be almost perfect. Similarly if you again consider those
latitude altitude plots which we are talking about earlier, that is the heating and moistening
tendencies. Once again we see like reasonable agreement between what is obtained from the

SPCAM and what is obtained by the simulation by the ResCu model.
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Applications of Deep Learning to Ocean Data Inference
and Subgrid Parameterization

Thomas Bolton'”’ and Laure Zanna'

Department of Physics, University of Oxford, Oxford, UK

Abstract Occanographic observations are limited by sampling rates, while ocean models are limited
by finite resolution and high viscosity and diffusion coefficients. Therefore, both data from observations
and ocean models lack information at small and fast scales. Methods are needed to either extract
information, extrapolate, or upscale existing oceanographic data sets, to account for or represent
unresolved physical processes. Here we use machine learning to leverage observations and model data

by predicting turbulent processes and subsurface flow fields. As a proof of concept, we train
convolutional neural networks on degraded data from a high-resolution quasi-geostrophic ocean model.
We demonstrate that convolutional neural networks successfully replicate the spatiotemporal variability
of the subgrid eddy momentum forcing, are capable of generalizing to a range of dynamical behaviors, and
can be forced to respect global momentum conservation. The training data of our convolutional neural
networks can be subsampled to 10-20% of the original size without a significant decrease in accuracy. We
also show that the subsurface flow field can be predicted using only information at the surface (e.g., using
only satellite altimetry data), Our results indicate that data-driven approaches can be exploited to predict
both subgrid and large-scale processes, while respecting physical principles, even when data are limited to
a particular region or external forcing. Our in-depth study presents evidence for the successful design of
ocean eddy izations for impl in coarse-resolution climate models.

Now, we come to our last application of this topic the Applications of Deep Learning to Ocean
Data Inference and Subgrid Parameterization. So, oceanographic observations are limited by
sampling rates while ocean models are limited by finite resolution and high viscosity and
diffusion coefficients. Therefore, both data from observations and ocean models lack information
at small and fast scales, that is neither do we have very good high resolution observations nor do

we have such good simulations from models.

Methods are needed to either extract information extrapolate or upscale existing oceanographic
data sets to account for or represent the unresolved physical processes. Here we use machine
learning to leverage observation and model data by predicting unresolved turbulent processes
and subsurface flow fields as a proof of concept, we train convolutional neural networks on

degraded data from a high resolution quasi geostrophic ocean model.

You do not know need to know what exactly is that but just assume that there is an ocean model

like.
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So, like whose aim here is the that a that is it has a some kind of something known as a streamed
function which is calculated by the model at different or which can be estimated at different
locations. And based on that the velocities or I mean the wave velocities at different locations

and different depths has to be estimated.

So, there are these physics-based models which like which can do this that is from the that is
which take into account the this stream flow function and based on this. So, this stream flow
function it can be estimated using various inputs and based on that it can like the that the ocean

model can estimate these velocities. But it is at a coarse resolution.

So, what the aim is like we will try to learn a machine learning model which will be able to
emulate this the results of this ocean model and then run that machine learning model at like high

resolution. So, that we can get a more a high resolution map of the of these velocities.

So, these are the data source in this case is the basically the simulation results obtained from this
quasi-geostrophic ocean variable. The input variable for the neural network is going to be the

stream function ¥ and the output variables are going to be the like the sub filter momentum Sx

and Sy along the 2 like along the x along the horizontal and along the vertical.



So, also like this is trained in one part of the model or in different part of the model and then
trace sorry different parts of the ocean and then tested in other parts of the ocean. So, the and so
it is trained on 9 years of data and tested on the 10th year and so on and so forth. So, this is the
CNN architecture it is a pretty standard CNN using the like say 3 convolutional layers having

this kind of specification using the selu. Like selu activation function.
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So, like in the different cases so this is the ground truth of the Sx. So, that is the momentum and

by ground truth we mean the simulation from the quasi geostrophic ocean model. So, you can see
at different depths the like we have got a map of the horizontal velocity of the ocean, rather the

horizontal component of the motion of the momentum of the ocean.
Similarly, we have the Sy also which is the like the if the I mean by Sx we mean the zonal

component and by Sy we mean the meridional component. This is the East-West component and

this is the north-south component and this is again calculated at different like at different
altitudes and also along different locations of the ocean and by altitude again I mean that

different depths of the ocean it can be calculated.



So, again so these are the predictions by the neural network, they the 3 things are depends on
which region the neural network has been trained. If it is trained in one region we see like this is
the map we get in the target region, if it is targeted if the CNA is trained in the second region.
Then this is the map as we can see it is like more or less in both cases it is more or less the same.
Though if we train the neural network in the third region then the predictions do not match so

well.

The similar is the result in case of the Sy the meridional component of the momentum also. So,

basically the idea here is that it or the takeaway message here is that it can a convolutional neural
network can be used to emulate these kind of ocean models also and as a result get high

dimension or high resolution maps for the ocean velocity at different locations.
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And at different depths this paper has provided a proof of concept but hopefully it is possible to
build on that. So, these are the different papers that we dealt with today. So, the so like the
different paper these all these papers they give one message that like in different domains of

earth sciences where parameterization of the process models is a problem.

It is possible to use the machine learning to emulate the processes the like high resolution

process models and like the advantage of that is that while running those high resolution process



models can be very expensive. The machine learning can without requiring so much of
computation can reproduce roughly the same results and this is true for different kinds of process

models.

Like we saw the convective processes as well as the ocean oceanic processes there are other
processes also and so this raises the hope that the large-scale earth system models like GCM they
can benefit greatly by use like. If they outsource the different sub-grid process processes to
machine learning models. So, that brings us to the end of this lecture thank you and in the
following lectures we will see a couple of more applications of machine learning in earth system

models. So, till then bye.



