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Hello everyone, welcome to lecture 36 of this course on Machine Learning for Earth System
Science. Like we are currently in module 5 the last module where we are dealing with how
machine learning can be used for earth system modeling and the topic of this lecture is

Physics-Based machine Learning for Process Models.
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CONCEPTS COVERED

» Physics-inspired Machine Learning
» Process Emulation using PIML

» Applications in PIML in Lake Temperature Modeling

So, the different concepts which we are going to cover here are physics-inspired machine
learning and how we can emulate process-based models using such a using this PIML. And we

will also see one specific application of PIML in lake temperature modeling.
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Physics-Informed Machine Learning for Earth Sciences

» Process Models used in various Earth System Processes for simulation
» Challenges: suitable parameter values, expensive computations
kb
» Approach 1: develop machine learning model to “emulate” process model (predict
its outputs given input initial conditions and parameter values)
» Approach 2: develop machine learning model to estimate suitable parameter value:
that map a given predictor set to a target value

» Issues with ML models: their outputs and internal values may not be
consistent with physics laws

» Solution: define physics-based loss function that measure the violatio
of physics laws

So, first of all what is this PIML all about? So, we have like in the last lecture we were
considered process-based models versus statistical models. Now these process-based models are
used in various earth system processes for simulation. Now they these suffer from multiple
challenges like suitable parameter values are often not known, the computations are very

expensive require a lot of time and a lot of computing power and so on.

So, now, in what ways can machine learning alleviate such problems? So, one approach is to
develop such models which can emulate these process models. That is to say you will you do not
really need to run these process models the key here is that most of these models are
deterministic that is if you set certain initial conditions like its determine like a that is there can
only be one particular output or I mean or final conditions that can arise. The question is what

that will be?

So, this can be considered as something like a machine learning problem like which is to like
map the initial conditions to the final conditions. So, like we can aim to train our machine
learning model which will simply be able to predict what the model will still what it will be able

to predict the predictions by the model by the process-based models.



That that is if you give the initial conditions then your machine learning model will be able to
predict what will be the values of the final condition which the process-based model will come

up with. So, that is called emulation of these process-based models.

And a second approach is to develop a machine learning model to estimate suitable parameter
values that map a given predictor set to a target value. That is like a more principled way of
estimating the parameters. Instead of some experts specifying the parameter values and using
that same parameter values all the time like this approach is here you like let us say we already

know the initial conditions as well as final conditions.

How we know? That is from the observations. Then we will see whether the model is actually
able to map those initial conditions to the final conditions. And then and if so for what values or

what settings of the parameters? So, that is the like the way of data driven parameter estimations.

Now these kinds of models or machine learning based models which we are talking about one
like one obstacle of using machine learning for such problems is that the they their outputs and
also the different internal values which they generate they may not be consistent with the laws of

physics.

By internal values, | mean suppose we have a machine learning model which consists of
different like variable which deals with various different variables of the process. So, like if you
are simulating over a particular time sequence at different points of times the values of those
variables will be estimated and so on. Now those estimates may not be consistent with the laws
of physics. So, the solution to this is to define a physics-based loss function that measures the

violation of the physics loss.
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Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving
nonlinear partial differential equations

M. Raissi*, P. Perdikaris ™*, G.E. Karniadakis *

ABSTRACT

We introduce physics-informed neural networks - neural networks that are trained to solve
supervised learning tasks while respecting any given Laws of physics described by general
nonlinear partial differential equations. In this work, we present our developments in the
context of solving two main classes of problems: data-driven solution and data-driven
discovery of partial differential equations. Depending on the nature and arrangement of
the awailable data, we devise two distinct types of algorithms, namely continuous time
and discrete time models. The first type of models forms 2 new family of data-efficient
spatio-temporal function approximators, while the latter type allows the use of arbitrarily
accurate implicit Runge-Kutta time stepping schemes with unlimited number of stages. The
effectiveness of the proposed framework is demonstrated through a collection of classical
problems in fluids, quantum mechanics, reaction-diffusion systems, and the propagation of
nonlinear shallow-water waves.

In recent times there is this paradigm called physics-inform neural networks which has like
emerge and this is a famous paper which uses physics these physics-informed neural network.
That is a deep learning framework for solving forward and inverse problems involving

non-linear partial differential equations.

So, most of the process-based models are actually based on differential equations that is I already
mentioned governing equations in earlier model. So, earlier lecture often those governing

equations are actually differential equations.
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Mahmoudabadbozchelou M, Jamali S. Rheology-Informed Neural Netwarks (RhINNs) for forward and
Inverse metamodelling of complex fluids. Scientific reports. 2021 Jun 8;11(1):1-3.

So, what this paper talks about its like using a deep learning framework for solving these kinds
of differential equations. And to solve like one like we can say one technology which becomes

very relevant in solving these differential equation problems is that of automatic differentiation.

Now this is what are physics-informed neural network looks like. So, let us say that just focus on
these two things d’s. Let us say that there are two variables ¢ and this A and both of these are
dependent on time and there is a particular like very parameter called y. You can treat it as

something like a model parameter.

So, let us say that these are the governing equations of the model of the process-based model. So,

that is

do/dt = f (0,AY)
dr/dt = f (0, AY)

So, these are the two model equation which specify the process-based models. So, the
process-based model will of course, start with some initial values of all these quantities and at
every given point it will calculate these derivatives and then update the two variables and then

based on that and then for following time step again it will do this and so on.



So, like but these the time steps that are being considered here are of course, infinitesimal. So, if
I have to even if I have to simulate for a particular let us say 5 seconds or something like that to
for that simulation it will have to carry out so many of these variable updates. Because at every

step it is the time 1s advancing by only an infinitesimal step.

So, the so, that is going to take of course, a very a lot of time and this is still a very simple
model. So, the what in case of neural network what we will aim to do is like we will specify the
time and we will specify the model parameter. The model really the neural network really needs

to predict the values of ¢ and A at that time for that for that value of the parameter, ok.

So, the neural network is of course, the like universal function approximator. So, f Y f ) all these

functions it will it should be able to approximate provided it is trained with a lot of data. But
whatever values it estimates that is 6 and A, can we really guarantee that it will be; it will be
following these two constraints that is can we will can we say that do/dt will actually be equal

to this function and dA/dt will be equal to this function? That in general we cannot say.

So, what we will do is, once we get the values of ¢ and A being produced by the neural network,
we will actually calculate do/dtand dA/dt from the generated values using automatic
differentiation. And we will also actually compute the these functions. So, based on that we will

actually calculate that these two losses R, and R,. So, as you can see R, is how much the will

like estimated value of o that is for the estimated value of ¢ are these two equal or not.

If they are not equal then what is the error? Similarly for A also are these two things equal or not?
If they are not equal then how much is the error? So, like if 6 and A are different the predicted o
and A are different from what they should be then of course, these errors will be large. So,
accordingly we need to like update the values of o and A. And how will such update happens?

The update will of course, happen if we change the different weights of the neural network.

So, they are like we will define this kind of a loss function which like which will help to update
the weights of the neural network. So, the in this case the loss function will include the this
physics loss the that is which is measuring how much by how much the predicted values are

differing from what they should be.



So, like there are now two different kinds of loss functions. One is the usual loss where we are
simply comparing the simulated values of ¢ and I mean the predicted value of ¢ and A with the
like what the process-based model would have given. Like if we had actually solved these

differential equations and till the time t and obtained the values of ¢ and A.

So, let us call those as 6" and A*. So, one a one part of the loss function is coming by comparing
o with o” and A with A". The other part of the loss is coming from the physics-based loss. Which
is basically calculating by how much these two like whether these two equations have been

satisfied or not? And if not, then what is the amount of error?

So, like we can say the prediction loss as well as the physics loss. So, these two things. So, like
the like as you can see this is the loss function. So, the loss function is getting its input from two
things. One is from the ¢ and A themselves that is the prediction loss and the other is from these

R1 and R2 that is the physics loss.

So, these two things are combined and the to get a new loss function. And based on the and it is
this combined loss function that we try to minimize through back propagation and so on. By
which we update the different weights of the model till we have been able to get the optimal set

of weights. So, that is how the this PINN or physics-inform neural network works.
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A General Lake Model (GLM 3.0) for linking with high-frequency
sensor data from the Global Lake Ecological
Observatory Network (GLEON)

Matthew R. Hipsey', Louise C. Bruce', Casper Boon', Brendan Busch', Cayelan C. Carey”, David P. Hamilton®,
Paul C. Hanson*, Jordan S. Read®, Eduardo de Sousa', Michael Weber®, and Luke A. Winslow’

Abstract. The General Lake Model (GLM) is a one-

Multi-layer Model:

g » Water Balance layer
iy of > Surface Energy Balance layer
or ot ey % Snow and Ice Dynamics layer
ient flexibili m- 5 Sediment Heating layer
e » Stratification and Vertical Mixing
layer
» Inflows and Outflows layer
» Wave height and Bottom Stress
layer
» Coupling with Local Ecology and
Biogeochemistry




So, in these lecture and also in the following lecture we will see several applications of the of
this kind of idea where we will see the loss function of a machine learning model being used to
like capture some kind of physical constraint like this. So, in today’s lecture we will consider one

particular application of lake temperature modeling.

So, suppose there is a lake, I want to estimate the different temperature I mean the temperatures
at different heights of that or depths within that lake. Of course, I cannot measure everywhere.
So, I have only a few in-situ measurements at the different depths and different locations. I want

to get that temperature profile of the entire lake.

Now, the first thing is there is a process-based model like because as I said there are only in-situ
measurements. So, we do not have the full data. In the absence of the full data, we have to
depend on what is simulated by a process-based model which the experts have developed over

the years.

So, this is what the process-based model which we are talking about its a general lake model also
known as GLM. It is used to it is like it is basically developed using some like in one for one
particular lake like which is provided with lots of sensors at different locations and so on. But the

aim is to apply it for any lake.

So, this general lake model it is a like its a very highly complex elaborate model with multiple
layers. So, these are the different layers which are mentioned the water balance, the surface
energy balance, the snow and ice dynamics and so on. Of course, this is not this is not relevant to

many lakes especially those in the tropical regions.

But in the extra tropical regions where ice forms on the in the lakes this is an important thing.
Apart from that sediment heating, stratification and vertical mixing, inflows and outflows, the
wave height and the bottom stress then and as well as the lake will have its own like organisms

living organisms living in it the then the plants and the which have grown all over.

So, like so, there is some kind of bio geochemistry also involved. So, the interactions of the lakes

water with this ecology and biogeochemistry these are also taken care of by some model.
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M. R. Hipsey et al.: A General Lake Model (GLM 3.0)

So, typically this is a schematic diagram of the lake model. So, as you can see like this is a lake
like. So, first of all there are some external factors like the rainfall, there is radiation of I mean
there is solar radiation incoming solar radiation and then outgoing longwave radiation part of it

might be blocked by the clouds etcetera.

And these like the solar radiation and that is how much solar energy it is receiving from the sun I
mean incoming and how much of it is outgoing? So, these also have a bearing on the temperature
of the lake. Then the lake might overflow there might be it might be flowing out to different

rivers or canals which may be connected with it.

And then there is a depth profile at different depths the different properties might change, then
there are these like its possible that there may be snowfall in one like in some places around the
lake. As a result of which ice may form on the lake. Then as the wind blows waves can be
created in the lake and according to the heights of the waves the temperature profile might also
change. There can be shear stress as the water is flowing and as a result that might also have

some bearing on the temperature and so on.
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So, like they have developed this kind of a very elaborate models like they the model has so
many different modules. Each of these modules they pass on they have their first of all they have
their own parameters and they like they exchange information between the different modules and

so on. So, like as you can understand this is a very highly complex and elaborate model.
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Process-Guided Deep Learning Predictions of Lake
Water Temperature

Jordan S. Read® (), Xiaowei Jia®, Jared Willard®, Alison P. Appling' (), Jacob A. Zwart* (1),
Samantha K. Oliver’ (), Anuj Karpatne®, Gretchen J. A. Hansen® (), Paul C. Hanson®
William Watkins' (), Michael Steinbach? (), and Vipin Kumar®

'US. Geological Survey, Reston, VA, USA, *Department of Computer Science and Engincering, University of Minnesota,
Minneapolis, MN, USA, *Department of Computer Science, Virginia Tech, Blacksburg, VA, USA, *Department of
Fisherics, Wildlife, and Conservation Biology, University of Minnesota, Minneapolis, MN, USA, *Center for Limnology,
University of Wisconsin- Madison, Madison, W, USA

Abstract The rapid growth of data in water resources has created new opportunities to accelerate
knowledge discovery with the use of advanced deep learning tools. 11ybrid models that integrate theory
with state of the art empirical techniques have the potential to improve predictions while remaining true to
physical laws. This paper evaluates the Process Guided Deep Learning (PGDL) hybrid modeling
framework with a use-case of predicting depth-specific lake water temperatures. The PGDL model has three
primary components: a deep learning model with temporal awareness (long short-term memory
recurrence), theory based feedback (model penalties for violating conversation of energy), and model
pretraining to initialize the network with synthetic data (water temperature predictions from a
process-based model). In situ water temperatures were used to train the PGDL model, a deep learning (DL)
model, and a process-based (PB) model. Model s in various including
when training data were sparse and when predictions were made outside of the range in the training

data set. The PGDL model performance (as measured by root-mean-square error (RMSE)) was superior to
DL and PB for two detailed study lakes, but only when pretraining data included greater variability than
the training period. The PGDL model also performed well when extended to 68 lakes, with a median RMSE
of 1.65 “C during the test period (DL: 1.78 °C, PB: 2.03 “C; in a small number of lakes PB or DL models
were more accurate). This case-study that ing scientific into deep learning
tools shows promise for improving predictions of many important environmental variables.




Now, the aim is and simulating it will also require like a lot of time and a lot of observations. So,
like and lots of parameters. So, this has been perfected for maybe one lake for which we have a
lot of observations like a meticulous deployment of sensors of various kinds. Now the; however,

this model is considered supposed to be a general lake model.

So, that it should be applicable to any lake even if we do not have so all these observations. So,
the aim here is to see if machine learning can emulate this kind of the general lake model. So,
that is what we will see in the three papers three very related papers which we will discuss one

after the another now.

So, the first paper process guided deep learning predictions of lake water temperature. the rapid
growth of data in water resources has created new opportunities to accelerate knowledge

discovery with the use of advanced deep learning tools.

Hybrid models that integrate theory with state-of-the-art empirical techniques have the potential
to improve predictions while remaining true to the physical laws. This paper evaluates a physics
guided deep learning hybrid modeling framework with a use case of predicting depth specific

water lake water temperature. The PGDL model has three primary components.

A deep learning model with temporal awareness that is a long short-term memory, a
theory-based feedback which includes model penalties for violating conservation of energy and
model pretraining to initialize the network with synthetic data that is water temperature
predictions from a process-based model. The in-situ water temperatures were used to train the

PGDL model a deep learning model and a process-based models.

Model performance was evaluated in various conditions, including when training data was sparse
and when predictions were made outside of the range in the training data set. So, these are
various like ablation studies which is necessary to do in these kinds of things. Like when we are
training machine learning model to emulate the this kind of a process-based model it is important
that we it should not require too much of training data. Because we have already said that these

models are expensive to run.

So, if you need to too much of data for training the model then; that means, they are just to train

the model we will have to run the process-based model lots of times maybe lakhs or millions of



times. Now if that you are doing anyway then why then what is even the idea of having the
machine learning model, right? So, the model should be able to work quite well even by with a
small amount of data that might be obtained by running the process-based model only a few

times.

The PGDL model performance was superior to the DL and PB for two detailed study lakes, but
only when pre trained data included greater variability than the training period. The PGDL
model also performed well when extended to 68 lakes, with a median RMSE of 1.65 degree

Celsius.
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So, like as I said earlier the model the aim is to develop the model for one lake and then use it for
multiple lakes. So, this is a like rough scheme of the model the machine learning model being
used in this case is a simply is a LSTM. So, as far as that is concerned there is no great

innovation in this paper. Innovation lies in the way it is applied.

So, there are these drivers or the covariates which are used in both cases. So, first like on one
hand there is the process-based model. The GLM with the general lake model which we just
discussed and parallel to that is the process guided deep learning model which is aiming to

emulate it.



So, this process-based model is of course, based on the another concept of energy balance and
water balance and so on for that it has its own process equation. So, it like from certain initial
conditions it will produce its predictions and then while we are training the neural network it will
receive the drivers as well as the in initial conditions and the it will know that the what its ideal

outputs will be as that is the predictions by this process-based models.

So, accordingly the neural network will be trained. but there, but while it is being trained it is
like just as it happened in this case its not only important to make the predictions properly, but it

is also necessary to make sure that the predictions are satisfying the different laws of physics.

So, that is why the energy balance its like which is of course, a very important concept in this in
the process-based models. We will have to see whether the like whatever values is being

predicted by the neural network whether they are maintaining the energy balance or not?

So, we will define a loss function accordingly which basically sees how much of discrepancy has
arisen based on what the neural network predicted. The discrepancy in terms of energy balance
and then the aim is to of course, to minimize this discrepancy. So, that acts as a some kind of a
feedback to the neural network and then the neural network again like updates its weights and so

on.
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Settings and Machine Learning Model

» Observations: In-situ lake temperature values at different depth profiles

» Predictor variables: air temperature, shortwave radiation, longwave
radiation, windspeed, relative humidity, and precipitation

» LSTM model used for predicting temperature
» Trained using output from GLM corresponding to given input

» Physical consistency of predictions across vertical profile maintained
using law of conservation of energy as a loss function



So, here the settings are as follows. So, the observations are the in-situ lake measurements at
different depth depths and the predictor or the covariates which we considered here at the air
temperature, short wave radiation, long wave radiation, windspeed, relative humidity
precipitation, etcetera. So, in this model like it already this model already shows how all these
covariates can like influence the lake water temperature at the different depth. So, they are all

provided as covariates.

Now, the LSTM model is used for the predicting of temperatures the it because LSTM is used
because LSTM is a sequential model and it is necessary for the predictions to be temporally to be
to be temporally consistent. And that the train it is trained using output from the GLM
corresponding to the given input. And the physical consistency of the predictions are maintained
across the vertical profile using the laws of conservation of energy using the like as a loss

function, ok.
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And so, like then comes the validation part. So, like the RMSC that has been obtained like at
different temperature profiles that is I mean to say at different depths of the lake this will this
kind of thing has to be studied.



So, they have considered, they have compared the process-based models in green, the red is just
the deep learning if you do not consider this energy balance loss function just if you train a
neural network to produce the produce to predict the output from the input. So, that is the blue
deep learning and red is and sorry, that is red the deep learning and this is a blue which is the

proposed model the process guided deep learning.

So, as you can see in many cases the RMSE is like they have that is they have calculated the
error of prediction for the different models. So, like as you can see that in many cases like in
many cases the. So, initially the error is high using the proposed model, but then as we receive

more and more temperature profiles that is the number of.

So, training the so, here on the x axis they are like basically comparing the training data and it
shows that as we have sufficient training data like this us the proposed model is able to achieve

almost equal RMSE as the as obtained from the process-based models and so on.

And similarly the here we have also like another similar study has been done for a particular lake

called lake Mendota and they are also they have come across similar results.
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Physics-Guided Machine Learning for Scientific Discovery:
An Application in Simulating Lake Temperature Profiles

Physics-based models are often used to study engineering and environmental systems. The ability to model
these systems is the key to achieving our future environmental sustainability and improving the quality
of human life. This article focuses on simulating lake water temperature, which is critical for understand-
ing the impact of changing climate on aquatic ecosystems and assisting in aquatic resource management
decisions. General Lake Model (GLM) is a state-of-the-art physics-based model used for addressing such
problems. However, like other physics-based models used for studying scientific and engineering systems,
it has several well-known limitations due to simplified representations of the physical processes being mod-

eled or challenges in selecting appropriate parameters. While state-of-the-art machine leamning models can

sometimes outperform physics-based models given ample amount of training data, they can produce results ~ Jia etal, 2021
that are physically inconsistent. This article proposes a physies-guided recurrent neural network model
(PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and
improves the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction
accuracy over that of physics-based models (by over 20% even with very little training data), while generating
outputs consistent with physical laws. An important aspect of our PGRNN approach lies in its ability to incor-
porate the knowledge encoded in physics-based models. This allows training the PGRNN model using very
few true observed data while also ensuring high prediction accuracy. Although we present and evaluate this
methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely
toa range of scientific and engineering disciplines where physics-based (also known as mechanistic) models
are used.

Based on this study we come on to like an another very related paper here physics guided

machine learning for scientific discovery and application in simulating lake temperature profiles.



Now physics-based models are often used to study engineering and environmental problems. The
ability to model these systems is the key to achieving our future environmental sustainability and

improving the quality of human life.

This article focuses on simulating lake water temperature, which is critical for understanding the
impact of changing climate on aquatic ecosystems and assisting in aquatic resource management
decisions. General lake model is a state-of-the-art physics-based model used for addressing such

problems.

However, like other physics-based models used for studying scientific and engineering problems
it has several well-known limitations due to simplified representation of the physics processes

being modeled or challenges in selecting appropriate parameters.

While state-of-the-art machine learning models can sometimes outperform physics-based models
given ample amounts of training data, they can produce results which are physically inconsistent.
This article proposes a physics-guided recurrent neural network model that combines RNNs and
physics-based models to leverage their complementary strength and improves the modeling of

the physical process.

Specifically, we show that a PGRNN can improve prediction accuracy over that of physics-based
laws by over 20 percent even with very little training data, while generating outputs consistent

with physical laws. So, that way this paper seems to be an improvement over this paper.

So, we here we see that actually the proposed model the which is marked in this blue it requires
significant amount of training data to require reach good performance, but here they are saying
that even with 20 percent of the even with small training data it is actually able to get a 20
percent improvement over the process-based model. While it also generating outputs which are

consistent with the physical laws.

And important aspect of our PGRNN approach lies in its ability to incorporate the knowledge
encoded in the physics-based models. This allows training the PGRNN model using very few
true observed data while also ensuring high prediction accuracy. Although we present and

evaluate this methodology in the context of modeling of dynamics of temperatures in lakes, it is



applicable more widely to a range of scientific and engineering disciplines where physics-based

models are used.

(Refer Slide Time: 27:58)

The total thermal energy of the lake at time ¢ can be computed as follows:

Ur=ew Y oata pailu. m
d

where yg,; is the temperature at depth d at time f, c,, the specific heat of water (4186 ) kg™""C"™"),
a4 the cross-sectional area of the water column (m”) at depth d, p ; the water density (kg/m”) at
depth dattime t, and dz the thickness (m) of the layer at depth d. In this work, we simulate water
temperature for every 0.5 m and thus we set dzy = 0.5. The computation of Us requires the output
of temperature ., through a feed-forward process for all the depths, as well s the cross-sectional
area ag, which is available as input.

The balance between incoming heat fluses (7;,) and outgoing heat fluxes (7,u,) results in a
change in the thermal enexgy (U of the lake. The consistency between lake energy U and energy
fluxes can be expressed as:

AUk = Fin - Four, ®
where AUy = Uy = Ur. More details about computing heat fluxes are described in the Appendix
A. All the involved energy companents are in W™

Heat Jiaetal, 2021
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So, this is like so, like this is specifically the setting. So, the like this is a lake and at their
different depths there are the temperature. So, like the main governing equation of this model

here is this thing that is the energy balance. So, the lake has a thermal energy U -

So, and then there is a heat flux there is incoming heat and there is outgoing heat F in and F out”

And the change of this total thermal energy of the lake is the like the difference between the
incoming and outgoing waves at any given time. Now the whenever there is a change in the total

thermal energy of the lake that is reflected at the different heights in different ways.

So, let us say that at like we have some initial conditions of that or we have some initial
estimates of the total of the lake total thermal energy in the lake, then we like as heat that is we
have observations of incoming and outgoing heat. We see how this total energy changes and as a

result of it how the temperature also changes at the different depths.

So, this is the like the model. So, as you can see there is the LSTM cells which like using the

storing the hidden variable. The hidden variable in this case is the cells the each one the in the



cell state etcetera. Like you can consider these two to indicate the past values of the total thermal
energy and so on. So, I am sorry I mean not the total thermal energy, but the temperature profile

at any given point.

So, that is the temperature profile at any given point is passed out to the next time point and the

observations or the inputs at every time point are these X, X, which are like which is basically

the heat flux. And the what the this model does? It at it is that at every point based on the
incoming heat flux it tries to estimate the lake energy which is again passed on to the next step

and.

So, there is a separate variable here like U Y U 5 etcetera that is that tell that maintains the time

sequence of the total energy of the lake and it is updated using these energy fluxes like which is
measured at every time point as inputs. And accordingly, the cell states or the hidden states of the
LSTM they maintain the temperature profile and like at the end of the this process the there is
some kind of a decoder model which like provides us the temperature profile of the lake based

on the hidden values of the LSTM.

So, when we are training this kind of an LSTM the there is as you can see there is a dual loss

function LRN is of course, the usual error of prediction. I mean the predicted values how

N
different the predicted values are of the actual values. By predicted values I mean the values of

the temperature at the different depths.

And additionally, there is this the energy conservation loss that is to say how much of energy.
That is as far as law of conservation of energy is concerned how much error has there been? So,
as you can see from time like the total lake energy at every time step that is being estimated by

the model and the input fluxes are also being provided at every time step.

So, ideally the this change of lake energy should be equal to the heat flux, but has that actually
happened or is there an error. So, that is what is measured by this part of the loss function. So,

this is the physics-based loss and this is the prediction loss.
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So, based on that again the model is trained so, as to minimize this loss function and this is what
the simulations look like. So, as you can see over a over several days or over several months like

if you plot the time series of the temperature of the lake at a particular depth.

So, like we can see that what is shown in blue is actually what the observations are like.
Obviously, its a something like a periodic because we know that the lakes just like temperature is

periodic similarly the lakes temperature will also have to be periodic at the different depths.

So, they have compared the GLM in green that is the general lake model which we discussed
earlier and then simple like a simple RNN with in black and the in red they have plotted the
physics based RNN which has about 2 percent of the training observations.

The initial one is the pretrained RNN model. That is this is like this is the RNN model which is
like which is generated like which is trained just for one particular lake, but for the target lake it
has not received any observations. So, that is a pretrained model and then for like for this
particular lake which is being considered if it is just retrained once on this particular lake. That is

to say some of its different parameters are re-estimated once using the observations.

Then we see like near-perfect performance as you can see that this red curve here follows almost

the blue dots almost perfectly. So, that we can that is with only 2 percent of the observations it is



able to fit so well. And so like also like they have calculated the error at different depths and as

we can see that like at.

So, this green is what you get from the proposed model and red is what we get from the
calibrated lake model general lake model which you saw. And we see that like in at certain
depths for example, in this case at certain depths the proposed model gives lower RMSC than

what even the calibrated GL process-based model could do.

In other situations so, they have measured it separately in different seasons and its show it is seen
that in some seasons the proposed model performs as well as the general lake models. In some
other situations it actually outperforms especially in summer and fall, ok. And similarly like that
is if you consider across all the seasons then also, we see that the proposed RNN this actually

performs better at the in perform like in estimating the temperature at different depths.
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So, based on this the same topic we have one more paper here the aim is to estimate the
parameters the physical parameters. So, like here the aim is to find the parameter settings which
allows the process models to replicate the observed values this is not only for lakes, but can also

be done for reverse systems also.



So, this is not necessarily tied to the GLM which we consider. I mean the GLM can be like this
can be used to for estimating the parameters of the GLM. Apart from that there might be some
process based hydrological models for river basic for river flows also. So, their parameters can

also be estimated using this framework.

So, they have developed a STN or spatio-temporal network like this is not very different from the
concept of these Markov random fields. The spatiotemporal Markov random fields which we
talked about earlier which has the edge functions and so on. Of course, this is not a probabilistic

model.

So, it does not have the edge potentials instead it has certain gating variables and these gating
variables are used to pass the data across the spatio-temporally neighboring locations. So, the
input is the various meteorological variables at a particular location i in a lake or river system

and the output is some kind of target variable.

In this particular case in this particular paper, they have considered the water temperature at that
depth or at that location as the like as the output variable. And of course, what that output

variable from the model will be depends on the parameter setting k.
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So, let us say this is the physics-based model input to it are the different covariates and so on. Its
output is the temp the water temperature at different depths, but those outputs are going to be

different for different values of the physical parameters.

So, the like the this STN model this is actually learnt to what it does is, it learns a mapping that is
like if the model has a certain inputs of the covariant values and then what parameters does it

need to produce a particular output? That is the question that this model tries to answer.

So, let us say that it already knows what should be the like what is the ideal output that is what is
the water temperature at the different depths it? Now it sees whether the model is able to actually
produce those water temperature values or not for different choices of the parameters and that is

framed as the learning problem.

So, the like then the what it does is it provides these parameters. So, that it the I mean it provides
the parameter the physical parameter settings such that the physics-based model will be use those
able to use those parameters along with the initial condition to produce what is the desired or

what is the true output variables that is the water temperature.
So, its like; it its like fine tuning the model by choosing the parameters appropriately.

(Refer Slide Time: 38:50)

Om depth (surface) 12m depth 2m depth

P 1.0 T ! = =

por | M s -

M7 N d NN A N
3 o e N’ W el
Wl LSS AP A
Pl A = 53
£ paf— o #"\"4 = =

£ i' -] \ d N - \ - -

kK p J \ P o i —

S 7 BN

¥ / —/ WS A=W o \ Jaetal, 2022
J‘"j .4"’ /v ," J"" »"’ /’ J"’ J‘"‘ / /’ J"\‘ "" /’ J"’ J"" J" .” 4"" o‘" /’ M’P
Sl Y - -

0n| - oree g T e

Ep-" ) “‘» "". A — s "

ki ;: o \ J Y - il ‘y;."--" Y 4 A ) ,'\"
IS | o’ Y, N el AN =
P St AR S AR PSS
] = - -
= o e Jey i =

£ f L ™ \ 20

IR J \ 4 &. W e\ *anlh - :

S !‘. . \‘ / \\ /’ \ - '\»- ’/ -y posa R

oy - e - \ e X \
A At A A o B B A Al
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All the predictions are shown at Om depth, 12m depth, and 24m depth (Columns 1-3).




And so, like after this is done as you can see the this is again validated by measuring the
temperature at different depths over a period of time. And it shows that and they have shown that
if they like can provide the if the parameters of the model are estimated in this particular way,
then it is able to do a better job of the simulation that is the this temperature profile comes as

close to the observations as like or closer to the observations than what was earlier.

So, basically these three papers like in a sense they are a bit complementary. So, like here the
aim of the first two papers is to emulate the physics-based model which is the general lake model
and the third paper what it does is its aim is to provide the optimal values of the parameters to

this model.

So, that it can perform well. The second paper actually shows that it is able to outperform the
general lake model while the third paper actually discusses a way in which the general lake
model can choose its parameters or receive its parameters. So, that it will be able to perform

better, ok. So, this brings us to the end of this lecture.
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In the following lecture also, we will see some other ways in which these machine learning
models including the physics-inspired machine learning is able to or is used for emulating

different process model. So, till then bye.






