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Hello everyone, welcome to lecture 26 of this course on Machine Learning for Earth System
Science. This is the last lecture of module 3, where we are considering machine learning for
discovering new insights in the geosciences. Today’s topic is Interpretable Machine Learning for

Earth System Science.
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CONCEPTS COVERED

» Interpretable Machine Learning for Earth Sciences
» Node activation in neural networks for output analysis

» Layerwise relevance propagation, backward optimization

So, the concepts which we are going to cover today are how machine interpretable machine
learning can be used in this domain. Secondly what is like in case of neural networks, how like

how node activation can be used for output analysis for the analysis of input and output.

And based on that we will see like see other concepts like layerwise relevance propagation

backward optimization etcetera. These are all concepts related to neural networks which



basically or rather which are related to like under making sense of how a neural network makes

its predictions.
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Explainable and interpretable Machine Learning

» Predictions made by Machine Learning models often accurate, but why?
» What aspects/features of an example are crucial for the prediction?

¥ What do the various parts of a ML model (especially nodes) actually represent?
» Which example is most representative of a particular prediction outcome?

» What domain knowledge can we gain from such analysis?
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So, first of all like what is explainable or interpretable machine learning. Now these two terms
explainable and interpretable, they are which are often used interchangeably though they should
not be, but often they are. So, basically the idea is that.

So, we know that machine learning models often make very accurate predictions. We have seen
that in the in several of the past lectures in this course itself, where we have seen where we have
shown how machine learning models are capable of making very good predictions much better

than what the classical methods would do.

But the question might arise that, why is it so? And like which aspects or which features of a
particular example are like does the machine learning model focus on to make the prediction.

Because the deep neural networks that are being constructed they are like mostly black boxes.

We do not know what calculations exactly happens in the nodes and the edges etcetera, we see
the like the output that we see often looks more like magic and the climate scientists may like or
the geoscientist, who are receiving these predictions; they may be like curious that why at all did

the model predict in the way they did.



Because it is not only about making predictions; we also want to know the science behind it. We
want to discover new insights about the process. In fact, that is what this module is all about. So,
just making great predictions is not enough we have to understand why those predictions were

made.

So, and one part of that is asking like, for any given example which parts of the example or
which features of the example were most relevant in making that prediction. And secondly, what

are the exact roles of the different parts of the model that we developed.

So, if it is a neural network model. So, all so many nodes etcetera there. So, many layers are
there what information is actually calculated by them. So, now the we may also be so like, but
can those mathematical operations be like represented in a more comprehensive way. That is or

that is by a domain scientists can they make any sense of those computations.

Also some questions might be asked that, so many examples are there. So, many training
examples are there each of which are like each of which are mapped to some kind of predictions
by the by whatever model we are using. So, for now for a particular outcome for a particular

prediction outcome if you are doing some kind of a classification analysis.

Now is there something like the optimal or the prototypical input which causes which causes that
prediction outcome. And finally, what is the domain knowledge of about the process that we can

get from this kind of analysis.
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Abstract Neural networks have become increasingly prevalent within the geosciences, although a
common limitation of their usage has been a lack of methods to interpret what the networks learn and
how they make decisions. As such, neural networks have often been used within the geosciences o most
accurately identify a desired output given a set of inputs, with the interpretation of what the network learns
used as a secondary metric to ensure the network is making the right decision for the right reason, Neural
network interpretation technigues have become more advanced in recent years, however, and we therefore
propose that the ultimate objective of using a neural network can also be the interpretation of what the
network has learned rather than the output itsell. We show that the interpretation of neural networks can
cnable the discovery of scientifically meaningful connections within geoscientific data. In particular, we
use two methods for neural network interpretation called backward optimization and layerwise relevance
propagation, both of which project the decision pathways of a network back onto the original input
dimensions. To the best of our knowledge, LRP has not yel been applied to peosclentific research, and we
believe it has great potential in this arca. We show how these interpretation techniques can be used o
reliably infer scientifically meaningful information from neural networks by applying them to common
climate patterns. These results suggest that combining interpretable neural networks with novel scientific
hypotheses will open the door 1o many new avenues in neural network-related geoscience research.

So, all these are questions related to explainable and interpretable machine learning which we
will study here through, three research papers that have appeared mostly in the last 2 or 3 years.
So, the here is the first paper physically interpretable neural networks for the geosciences
applicability for earth system variability. Neural networks have become increasingly prevalent
within the geosciences, although a common limitation of their usage has been a lack of methods

to interpret what the networks learn and how they make decisions.

As such neural networks have often been used within the geosciences to most accurately identify,
a desired output given a set of inputs with the interpretation of what the network learns used as a
secondary metric to ensure the network is making the right decision for the right reason; this is

important.

Because that is it is not enough to make an accurate prediction, but rather the prediction should
be done for like for on the basis of some features or something which are physically meaningful.
Otherwise like it becomes a case of say spurious correlation or something like that, that is not

what scientists want we like.



Neural network interpretation techniques have become more advanced in recent years. However,
and we therefore, propose that the ultimate objective of using a neural network can also be the

interpretation of what the network has learnt rather than the output itself.

We show that the interpretation; we show that the interpretation of the neural networks can
enable the discovery of scientifically meaningful connections within the geoscientific data. In
particular, we use two methods for neural network interpretation called backward optimization
and layerwise relevance propagation both of which project the decision pathways of a network

back on to the original input dimensions.
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BACKWARD OPTIMIZATION

Method Input: User-defined output of a trained neural network.

Method Output: An optimized input that shows the input patiern most closcly associated with the
user-defined output according to the trained neural network

Procedure:

. A neural network is trained, and the weights and biases are frozen, which means that they arc not ~ 10ms etal, 2019

updated when a sample is input into the neural network.

A desired output from the neural network is defined. For example, if the network is trained to identify

whether a sample belongs in one of two categories, the desired output could be when the neural network

is 100 confident that the input belongs in one of the two categories.

Asample is penerated of the same shape as the samples used to train the neural network, but the sample

is initialized as all zeros,

. Thisall-zero sample is passed through the network, and the output is gathered. The output is then com-
pared to the desired output, and the loss (i.c., error) of the all-zero sample is calculated with respect o
the desired output. The loss function is the same function used to train the network.

. The loss is translated backward through the neural network to the input layer using backpropagation.
But, rather than updating the weights and biases of the network along the way, the input sample itself
is updated in a manner, which reduces the loss using an increment of the information, or gradient, that
was translated back to the input layer,

lterate over Steps 4 and 5 until the input is optimized such that iterations no longer reduce the error of

the neural network's outpul.
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So, like let us first understand these two methods backward optimization and layerwise relevance
propagation. So, backward optimization, the method input is a user defined output of a trained
neural network. So, we have a neural network and let us say let us begin with an output. So, let
us say the neural network predicts the class labels and for a particular example let us say the

possible. Let us say for a particular task the possible outputs are class A, class B and class C.

So, let us say for example, focus on class A. Now the question which I am asking is what kind of
input will result in a prediction of class A? Or what kind of a input will result in a prediction of

class B? What is a typical input for class B? So, the method output is an optimized input that



shows the input pattern most closely associated with the user defined output according to the

trained neural network.

It will become a bit more clear when we come to the specific examples. So, the procedure is as
follows: first the neural network is trained and the weights and the biases all the weights and

biases are etcetera are frozen which means that they will no longer be updated.

So, like the training of the neural network etcetera is done all its parameters are like fixed and
frozen. Now a desired output from the neural network is defined as obtained by the as specified
by the user say class A or whatever. For example, if the network is trained to identify whether a
sample belongs in one of two categories, the desired output could be when the neural network is

hundred percent confident that the input belongs to those categories right.

So, as I said again class A, class B and class C these are the three possibilities. Let us say for
class A if there any input for which the model will be 100 percent certain. That yes, it is indeed
of class A. So, that is a typical input like, we can say at that typical prototypical input for class A

as far as the model is concerned.

Now, what we do is a sample is generated of the same shape as the samples used to train the
neural network, but it is the sample is all initialized with as zeros. So, basically its like if the it
takes the zero if it takes mXn matrices as input the neural network. Then we start off with a like,
so like basically we are trying to estimate the values of x. So, let us start with some x which is

like all zeros initially.

This all zero sample is passed through the network and the output is generated. The output is
then compared to the desired output and the loss of the all zero sample is calculated with respect
to the desired output. So, for the all zero sample some like the network will make some kind of
prediction that prediction is compared to, the particular output we have in mind which for which

we are searching for the optimal input.

And so they are compared and some loss some value of the loss is calculated. Now, the loss
function is the like same function as is used to train the network. The loss is translated backward
through the neural network to the input layer using backpropagation. But rather than updating the

weights and biases of the network along the way the input sample itself is updated in a manner,



which reduces the loss using an increment of the information or gradient that was translated back

to the input layer.

So, like in normal backpropagation the input remains constant, but its the really the weights the
w's that are updated through gradient descent. In this case is the reverse in this case we will
assume that all the w's the weights they remain unchanged, they are fixed at the values that was
obtained by the process of training. But rather it is the input values x that are going to be updated

when we do the backpropagation.

So, the variable is no longer w, but instead x itself is now the variable and they are going to be.
So, the input value to every node is going to be updated like as the error is back propagated and
that is why the this updation of the input values will take place from the output to the input. So,
the these steps are iterated, the steps 4 and 5 are iterated until the input is optimized such that the

iterations, no longer reduce the error that is basically it converges.
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lllustration of the Backwards Optimization (Optimal Input) Procedure
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So, just like in the in normal backpropagation that like we say it has converged when the w

values no longer change in this case, we will say convergence has happened if x no longer

change.



So, here is an like cartoon which shows the illustration. So, let us say that this is the neural
network. So, this is like let us for simplicity let us assume that this there is only one hidden layer
with these two variables and so like these are the different edges whose weights have already

been estimated and this is the output layer.

So, like there are like. So, so like let us assume say that these indicate the probabilities of the two
classes that, so let us say that its a binary classification problem. So, there are two classes and
these node these two output nodes they indicate the relative probabilities of the two classes. So,
here is an in let us say that the desired output is one zero; that is class A is I have the basically, I

want to see the prototypical input for class A.

So, that means, the situation where the first node which represents class A that has full
probability one the second node which represents class B that has probability 0. So, I am looking
for the input which causes 1 and 0 at these output variables. So, as discussed here, we start with

the all 0 samples.

So, this is the all 0 sample it is provided like it is provided as the input, so it like this the all the
calculations take place and let us say we find the output values come to 0.1 and 0.9 which is of

course, very different from 1 to 0. So, we calculate the loss function.

Now since this is a classification problem the loss function is probably the cross entropy loss
function. So, this is the probability distribution over the classes and this is the desired probability
distribution. So, two probability distributions can be compared using the this thing like using the

Cross entropy.

So, we get the loss value of 2.3. So now, this loss is now going to be backpropagated through all
these through all the nodes like this from the output towards the input. So, like as I said as the
backpropagation happens, it is the input values which get updated not the weights.

So, like so based on these 0.1 and 0.9 first these two nodes that their values get updated then
these two then based on their values the values of these two nodes get updated and finally, the
input values also get updated. So, let us say that this becomes the updated input values 0.2, 0,

0.1. Now we just keep on iterating like this over and over.



So, let us say in this case when we use this as an input 0.2, 0, 0.1 again by using this as the input.
Let us say the output changes to 0.8, 0.2, but that is still different from the desired 1 and 0 some
residual is still there. So, again that error we calculate and again we backpropagate it like this

again updating all the input values, but keeping all the weights constant.

So, let us say after that we get this as the updated input 0.3, 1, 0.2. Again this see and in this case
the loss is 1.61. So, this is better than the loss we had obtained earlier which was 2.3. So, we just
keep on doing this doing this until the loss is very nearly equal to 0 and then we find that like
whatever the out the input we get like that that is the desired input.

That is we see that for one the input of in this case 1.5, 0.3, 0.8; the output prediction is class A
probability is one class B probability is 0 and this is exactly what we desired. So, this is then
prototypical feature vector which will be like confidently classified as class A. Similarly for class

B where this one has 0 value and this one has 1 value we can calculate the prototypical example

ok.
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LAYERWISE RELEVANCE PROPAGATION

Method inpul: An input sample.

Method outpul: The relevance of each feature within the input sample for the associated output of the neural
network.

Procedure;

1. A neural network is trained, and the weights and biases are frozen, which means that they are not

updated when a sample is input into the neural network, Tome etal, 2019
2. Asample is then input into the frozen neural network, and the output values are retained. If the neural

network has categorical output and ftmax operator following the output nodes, then the output

values prior to the softmax operator are retained. A single node of the output layer is identified as the

ot
node for which the relevance should be calculated. For cases of categorical output, this node is typically “'"'u +max(, bJJ

" Rz e—
the one with the highest output likelihood for the given sample. i r: /|
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The output value of the single node is then propagated backward through the network using information
about the weights and biases of each node of the neural network. The propagation is done according to
a particular set of propagation rules, which are discussed below. These rules depend on the types of the
neural network and input data, and what type of information is to be inferred from the fetwork,

This backward propagation through the network is done until reaching the input layer. The resulting
values have the same dimensions as the input and correspand to the relevance of each input feature for
the neural network's decision of its output.

This process is completed for cach sample of interest, from which the relevances for each sample can be
studied independently or through composites or clusters of similar patterns of relevance.

-

So, this is the task of backward optimization, where for a particular output we try to find it is its
input. The next task is layerwise relevance propagation which is like in this case the input is

again is an input sample. And the methods output is the relevance of each feature within the



input sample for the associated output that is the. So, when the input is presented the neural
network which you have created that will definitely give some output, but which of the input

features was actually most crucial or most important in determining that particular output.

(Refer Slide Time: 17:35)

lllustration of Layerwise Relevance Propagation
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So, if you look at this neural network. So, like here let us say that these are this is my input x X,

s X, And once again let the there is no optimization of the weights to be done that is the neural

network has already been trained all the weights etcetera are frozen. So, now let us say that when

we provide x p Xy X a8 the input the output is found out to be y L and y .

So, now, I will be so there are two output nodes. So, now what I am interested is that what is the

relative importance of these features in choosing the or in like or in creating this value of y %

That is which of these features determined that this particular output node is going to have the

value of y o instead of some other value or in for this node which the features which ensure that

is value was Y, right.

So, for that what we do is layerwise relevance propagation that is we calculate some a quantity

known as relevance and then we propagate it backwards like that. So, like when like that. So, the



initial the let us say we are focusing on this particular node and we are trying this out particular

output nodes.

So, let us say the relevance value is initially set to this y 5 value itself. Now according to that this

value is connected to these input nodes then this input node is connected to these two hidden

nodes etcetera so for.

So, whenever we see this kind of a situation that is two successive layers i and j in the jth layer I
have a like a value whose relevance. I mean there is a node whose relevance I know or I have
calculated. Now that relevance I have to propagate back to the connecting connected nodes in the
previous layer and for that we have a rule for propagating these relevance values so like. So,

initially this one will have its relevance value which is its the output value itself.

Based on that in this node we will calculate the relevance value according to the formula. So, see

Ri for any node i which is in let us say in a in any layer, I am calculating that relevance value Ri
in terms of R], which is the next layer towards the output. So, from the output again the relevance

values are flowing backwards towards the input according to these formula. So, that way for
starting from this output node we calculate the relevance values for all the nodes that lie on its

path back to the input.

So, the so that way like for the input variables also or till the input variables these relevance
value is backpropagated. And so these relevance values what they give us at once they reach the
input variable the input nodes what they give us is the like something like the relevance of the

different inputs.
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Applications under investigation

» Problem 1: ENSO (EI Nino Southern Oscillation) phase detection from worldwide
temperature

» Input: a spatial map of Sea Surface Temperature anomalies all over the world on
any given day/month

» Output: probability of El Nino phase and La Nina phase

» Problem 2: temperature anomaly sign prediction at a continental
location based on SST anomalies all over the world

So, so these are all conceptual ideas of interpretable or explainable machine learning. Now, they
are application in the domain of earth system science. So, we consider two problems you can say
that they are something like toy problems, I mean which are not really the biggest questions of
earth sciences, but like mostly they are for demonstration purposes. So, the first problem is the El
Nino southern oscillation is a phenomena in the central pacific ocean where a particular part of
the central pacific ocean known as the Nino 3.4 region that gets very hot in some years and very

cool in some other years.

So, those two so it is like there is a oscillation in a phase; there is a positive phase when it is very
hot that that phase is known as El Nino and then there is a negative phase called La Nina when
that region becomes cold. And now this is like a very fundamental thing concept in the very
fundamental phenomena in, climate sciences in the sense that although it happens in central

pacific ocean, but its repercussions are felt all over the world, in different parts of the world.

So, the input is a spatial map of the sea surface temperature anomalies all over the world on any
given day or any month ok. And the output is the probability of the like El Nino or the La Nina
phase or on that particular day or month. That is we know that this like what happens in the
central pacific it determines or like which influences the sea surface temperature all over the

world.



So, the question is that is being asked is suppose in a given month let us say January 2022 this is
what the sea surface temperature all over the world looks like. Now based on that tell me are we
currently having an El Nino or a are we having a La Nina ok. So, the that is the output

probabilities this is the first problem we will consider.

The second toy problem we will consider is like the temperature like let us consider the
temperature anomaly or specifically the sign of the temperature anomaly positive or negative, on

a particular continental region that is some location on the land let us say Kharagpur.

So, let us say today is or ok let us say you have the sea surface temperature anomalies from all
over the world, based on that you have to predict whether today in Kharagpur is going to be
hotter than usual or colder than usual. That is are we going to have a like positive temperature
anomaly or negative temperature anomaly this like this can also be cast as a seasonal prediction

problem instead of a daily anomaly we can consider as monthly anomaly or something like that.

So, is it a hot time in Kharagpur or is it a cold time in Kharagpur at in that is what you have to

understand based on the sea surface temperature anomalies on all over the world.
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Neural Network Design for ENSO Phase Identification
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So, these are the two problems for like both are like basically something like binary classification

problems. So, we train a neural network for that the in both cases the input is the world map of



the sea surface temperature and the output is like one of two values or rather we can say the

probabilities of the two classes.

So, we have already seen how like the spatial map of a particular variable in this case sea surface
temperature can be provided as the input. So, there will be convolutional layers and all kinds of
things. So, let us say that instead of going for a let us say we have built some kind of simple

neural network, which is capable of doing this prediction reasonably well.

Now the question I am asking is, suppose based on the world map of sea surface temperature
anomalies it is actually able to predict like is it El Nino or is it La Nina. Then the question is
exactly which like that is I may be interested in asking for what kind of pattern of the these
temperature anomaly is over the world will I be certain that it is indeed El Nino or it is indeed La

Nina.

Similarly, in the second case also suppose like it is a hot day in or a hot season in the location
that is like that that is being investigated. So, then like on like what kind of a spatial map of these
sea surface temperature anomalies, will make us most confident that it is the it should indeed be
a hot day or it should indeed be a cold day at the location that we are interested in. So, like in

these maps they have indicated the location by a red dot.
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So, this is what the answers to the questions is. So, if you in the first problem of ENSO phase
prediction. So, this is what the optimal output looks like. So, optimal output so basically it took.
So, it shows that to like it might be taking the whole worlds sea surface temperature anomaly as
inputs, but while predicting whether there is ENSO or whether there is El Nino or La Nina is

really this part which like which is which it is focusing on.

Similarly, if you look at the layerwise do the layerwise relevance propagation where like in
different parts of or different input features you are checking its relevance. So, you can see that.

So, this black value means low relevance and this white value means high relevance.

So, you see that it is the observations in this central pacific region these are the region what have
the high relevance in predicting whether it is an El Nino or La Nina while the others other feature

they have no relevance little or no relevance.

So, in a sense it is like telling this is like this should the this answer should be obvious, because
we know that EI Nino happen or La Nina happens due to a hot phase of in this particular region
only in the central pacific region which is known as Nino 3.4. So, if we have to understand from
sea surface temperature anomalies if we have to understand whether it is a El Nino or La Nina

then we should be focusing on this region only not on any other region, that is common sensical.

But that common sense had not been had not been communicated to the model in any way it was
just given maps of the sea surface temperature all over the world and we had been informed that
this is a an El Nino phase or this is a La Nina phase the model is itself able to understand that, it

is because of this region that you are calling it either the EI Nino or the La Nina.

Similarly in case of layerwise relevance propagation also it is really it is precisely these locations
which have the relevance not in other not any other location. This is something which is like

which the model had did not know, but it is able to figure it out from the data.

Similarly in case of the seasonal prediction problem like we find that the optimal like if we are
focusing on this particular region in along the western coast of Canada like let us say it is a hot
day in the western coast of Canada then what does the spatial map of sea surface temperature

look like and it is this is what is shown.



And similarly when we are calculating the composite the relevance we see that the its really
these regions the southern pacific or the we can say the south central pacific ocean, as well as
some regions of the pacific ocean here which have the most relevance in like determining
whether this location of interest is going to have or is having like is having high temperature or

not.

So, this is the result we get for this location if we consider some other location like Kharagpur as

I mentioned then we may get some other result.
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So, like these are the more detailed maps of the of those relevance.
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Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms
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(Manuscript received § Scptember 2018, in final form 9 May 2019)
ABSTRACT

Deep learning models, such T —

utilize multiple specialized layers to encode
spatial pattems at different scales. In this study, decp learning models are compared with standard machine
learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and

hi dvnamic ficlds from a tion-allowing numerical weather prediction model. The data for this
study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from
3 May to 3 Junc 2016. The machine lcarning models arc trained to predict whether the simulated surface
hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A
convolutional neural network is compared with logistic regressions using input variables derived from cither

the spatial means of cach ficld or principal component analysis. The network

significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator
ic curve. P of the neural network through feature importance and

feature optimization reveals that the network synth di about the and storm

morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind
shear profile that favors wide updrafts. Different neurons in the network also record different storm modes,
and the magnitude of the output of thase ncurons is used to analyze the spatiotemporal distributions of
different storm modes in the NCAR ensemble.

Now this is the what we discussed here is one kind of.
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One method of calculating the or the importance of features and so on.
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Permutation Feature Importance

» Consider input vector x = [x1,x2,....,xd], f(x) =y

» Replace x1 by x1’, abserve change iny

» Consider random values for each variable, measure change iny
» For which variable is the change maximum?

¥» Idea: variables which cause maximum change iny, are “locally” most

u_n

important around “x

» Can be extended to “globally important”

Another method of importance of the features is the permutation feature importance. So, let us
say we have a feature vector x with these particular like it is a d-dimensional feature vector with
these values which produces the output of y. Now suppose I replace one of these values let us

say the first feature its value is its current value is x - Let us say I change it to some other value |

make it xll. Then the y should change, but by how much I measured that change.

And then I do this kind of thing for all variables and we and I see that changing which variable
has the maximum impact on the output variable y. And in fact, like changing by how much has
how much effect on the output variable y. So, the idea here is that the variables which cause

maximum change in y, they are the most important variables at least locally.

That means, for these values of the other variables these feature is most important for some other
values of the other variables some other feature might be most important. So, so like its we are

basically looking for the locally most important features in this situation.

So, that is the permutation feature importance. So, like in this paper what they have tried to do is
the probability of severe hailstorms that is like suppose a thunderstorm is going to take place. So,

they are calculating what is the probability that hailstorms will occur.



So, these are the inputs like the geopotential height, temperature, dewpoint, zonal, wind
meridional, wind etcetera all these are inputs to the neural network based on that the neural
network like estimates the probability that there is going to be a hailstorm. So, so fine the neural
network is trained and it let us say it performs quite well and as has been found out by this study.

It performs better than the other methods like logistic regression etcetera, but then the question is

why did it predict so?
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So, the authors of this paper they have used permutation feature importance to find out like really
which are the like which are the features that resulted in the prediction of these things. So, like
for each of the variables like which of the for each of the input variables that were considered,

they are like the their relevance values or rather their this permutation feature importance values

are calculated and.
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Detecting Climate Signals Using Explainable AI With
Single-Forcing Large Ensembles
Zachary M. Labe' © and Elizabeth A. Barnes'

'Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Abstract it remains difficult to disentangle the relative Influences of aerosols and greenhouse gases
on regional surface lemperature trends In the context of global climate change. To address this Issue,

we use a new collection of Initial-condition large ensembles from the Community Earth System Model
verslon | that are prescribed with different combinations of industrial acrosol and greenhouse gas forcing.
To compare the climate response lo these external forcings, we adopt an artificial neural network (ANN)
architecture from previous work that predicts the year by training on maps of near-surface temperature.
We then utllize layer-wise relevance propagation (LRP) to visualize the reglonal lemperature signals

that are Important for the ANN's prediction in each climate model experiment. To mask noise when
extracting only the most robust climate patterns from LRP, we introduce a simple uncertainty metric that
can be adopted to other explainable artificlal Intelligence (Al) problems. We find that the North Atlantic,
Southern Ocean, and Southeast Asla are key reglons of Importance for the neural network lo make Its
prediction, especially prior to the early-21st century. Notably, we also find that the ANN predictions
based on maps of observations correlale higher Lo the actual year after training on the large ensemble
experiment with industrial acrosols held fxed to 1920 levels. This work Illustrates the sensitivity of
reglonal temperature signals to changes In aerosol forcing In historical simulations. By using explainable
Al methods, we have the opportunity to improve our 2 of (non)linear of
anthropogenic forcings In state-of-the-art global climate models.

And similarly like we have some other interesting applications of these things. So, like detecting

climate change signals using explainable Al with single forcing large ensembles.
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2.m Temparohure INPUT LAYER

Labe et al, 2021

Layer-wise Relevance Propagation +

Figure L. Schematic of the artificial neural network (ANN) used in this study for predicting the decade/year from
global maps of 2-m alr temperature (Input layer). The shallow ANN features two hidden layers that both contain 20
hidden units. The output layer uses fuzzy classification (Zadeh, 1965) to assign each prediction year to the probability
of It occurring n a single decade (e.g., within 2000-2009) (Barnes et al., 2020). An example heatmap using layer-wise
relevance propagation (LRP; Bach et al., 2015) Is also illustrated here. LRP highlights the reglons of greater relevance
for the ANN to predict the year by propagating an output sample backward through the frozen nodes of the ANN until
It reaches the Input layer (Toms et al., 2020).




So, here the basically the idea is that you, so we all know that the like the temperature across the
world is changing due to global warming and climate change. Now if you are provided the and

this like and we know that the earth has been gradually warming up since the 1900s and so on.

So now if you are given the temperature map of the world then from that map can you can a
neural network predict which year that map belongs to. And if so if it can indeed predict then
which are the most important regions to which will be looking at. That is in a sense it is like
asking which are the regions which have contributed maximum to the global warming from

1900s to say the current times and so on.

So, that is what is achieved by this kind of task. So, like it is found that the they have trained a
neural network in which the instead of focusing or predicting the exact year they predict some
the neural network can predict some year range like which decade, let us say the 1920s decade or
1930s decade and so on. So, it turns out that this neural network is that is once it is it receives

spatial map of the temperature over the world.

It is able to predict the decade from which this map was taken it is able to predict that quite
accurately, but then we do the layerwise relevance propagation etcetera to find out which are the
locations having maximum relevance. So, it turns out that the like as you can see that the regions

which are marked in white they are the maximum like they have the maximum relevance.

That is to say from let us say from 1900s to the current times it is these regions which probably
have had the most significant changes and hence by looking at its by looking at them that we can

understand most clearly which year it is or which range of year it is and.
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So, like this kind of study can be done for different variables I mean not only for temperature,
but let us say also from the aerosol distribution all over the world or the concentration of

different greenhouse gases from all over the world etcetera.
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Figure 6. Layer-wise relevance propagation (LRF) composite heatmaps averaged over 1920-1959 (a, ¢, 1), 1960-1999 (b, {, ), 2000-2039 (¢, g, k), and ’mﬂ-W!
(d, b, ) for the three large ensemble experiments (AER+; 4-4, GHC+;-h, ALL 1), Higher LRP values indicate greater relevance for th
network's prodiction. th percentile text) have boen masked out (gray shading).

And of course, for different different variables we see different amounts.
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» Most predictipns by MLin earth science applications can be explained by
specific parts of the input, which provided new domain information

» Often, prediction classes or values have a “typical” input or prototype
initial condition

» XAl techniques help us to understand model weaknesses/biases

» XAl techniques also help us unearth such domain information

So, that brings us to the end of this module. So, the key, so these are the different papers that we
discussed today in today’s lecture. The key points to be taken from this from this lecture are first
of all most predictions by machine learning in earth science applications; they can be explained

by only specific parts of the input and this which provides new domain information.

Like in this case only certain it is only certain locations which carry most of the information
behind the prediction like actually like for the different year groups in this case in the last

problem that we mentioned.

So, these are the for each set of year say for the 1920 to 1959 region decade its all its really this
is what the optimal maps of or the or the optimized inputs for the aerosol map for the greenhouse
gas maps etcetera look like. Similarly, for the 2000 to 2039 year this is what the optimized maps
look like.
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So, these actually give us the domain knowledge in the sense like how these maps have changed
over time and like which are the like which of these maps is the most is the distinctive

characteristic of this particular decade.

So, often the prediction classes or values they have a typical or typical input which is what we
are calculating by the process of backward optimization. So, we also these explainable Al
techniques help us to understand the weaknesses and the biases of the difference models and also

help us to unearth such domain information.

So, with that we come to the end of module 3. From the next lecture onwards we will move to
module 4 where we will see how machine learning can help in the earth observation systems. So,

till then bye.



