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Hello, everyone. Welcome to lecture 23 of this course Machine Learning for Earth System
Science. We are currently in module 3, where we are focusing on Machine Learning methods to
like for discovering new insights related to various aspects of earth science. In today’s lecture,

we will be focusing on Geostatistical modelling for mapping based on in-situ measurements.
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CONCEPTS COVERED

» Reconstructing spatial field from in-situ observations
» Geostatistical modelling of spatial covariance
» Machine Learning for spatial prediction

» Validation of spatial prediction/interpolation

So, the concepts that we are going to cover today are first of all how to reconstruct a spatial field
of any variable from in situ observations. Secondly, geostatistical modelling of spatial covariance
like we have like this is a concept which we had studied in one of the very early lectures. So,
today we will see some recent papers which have made use of that albeit in a more advanced

way.



Thirdly, we will see how machine learning methods can be used for spatial predictions and how

such spatial prediction or spatial interpolation can be validated against observations.
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Spatial interpolation

» Aim: to develop complete spatial map of a particular geophysical variable Y
» Should have point-wise estimate of the variable

» Basis: observations of variable at a few points (in-situ)

» Additionally, observations of co-variates at all (or many) points

» Basis: geostatistical equation Y(s,t) = u(s,t) +n(s,t) + random noise

» How to model pand n?

So, first of all let us talk about the basic idea of spatial interpolation. The aim here is to develop
the complete spatial map of a particular geophysical variable Y. By that I mean that I should have
point wise estimate of the variable. You give me any point any location by specifying it is exact
coordinates like I should be able to give you the measurements of that of the variable which is of

interest. It is not gridded observations it is like point wise observations.

But, on the what basis should I construct such a spatial field? The basis is like I may have some
observations obtained from some sensors like say thermometers or barometers or whatever
which are placed like at only a specific points. Like maybe like on top of some tower there is a
like there is a like wind measurement device, maybe there is a particular weather station

somewhere inside a city which measures the temperature at that particular place and so on.

So, these are all what is known as in situ measurements that is [ have point wise measurements at
only a small number of points and additionally, I may also have observations of some covariates

which are known to influence the geophysical variable Y which is of my interest and these



covariates may be the observation we may assume that these covariates are observed at all points

or at least in many points.

Now, the basis for making such a spatial interpolation is the geostatistical equation which we had
come across earlier. So, here like at that time we may have denoted the variable as X here we are
denoting it by Y. So, it is a spatiotemporal variable. So, we divide it into the local component, the

global component plus the noise. So, now, the question is how to model or p and 1.

So, the different the research question basically based on to that how to get p and 1. So, some
highlights of that or some basic outline to that we had discussed at that time when we considered
a Bayesian hierarchical model using Gaussian process and so on. But, let us see like what are the

challenges faced in real world problems where this is used and how researchers get around them.
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A Nonstationary Geostatistical Framework for Soil
Moisture Prediction in the Presence of Surface
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Abstract Soil moisture is spatially variable due to complex interactions between geologic, topographic,
vegetation, and atmospheric variables. Correct representation of subgrid soil moisture variability is crucial
in improving land surface modeling schemes and remote sensing retrievals. In addition to the mean
structure, the variance and correlation of soil moisture are affected by the underlying land surface
heterogeneity. This often violates the i ion of stationarity/i made by classical
geostatistical models. The present study proposes a geostatistical framework to predict and upscale soil
moisture in a nonstationary setting using a flexible spatial model whose variance/correlation structure
varies with changing land surface cha istics. The proposed isapplied to model soil
moisture distribution using in situ data in the Red River watershed in Southern Manitoba, Canada. It is

seen that both the variance and correlation structure exhibits spatial nonstationarity for the given surface
heterogeneity driven primarily by vegetation and soil texture. At the beginning of the crop season, soil
texture plays a critical role in the drying cycle by d variance and i i ion as the soil
becomes drier. Once the crops begin to mature, vegetation becomes the dominant driver, promoting spatial
correlation and reducing SM variance. We upscale our point scale soil moisture predictions to the airbomne
extent (~1.5 km) and find that the upscaled soil moisture agrees well with the observed airborne data with
root-mean-square error values ranging from 0.04 to 0.08 (v/v). The proposed framework can be used to
predict and upscale s%il moisture in heterogeneous environments.

So, let us focus on this paper which came out in 2019, A stationary Geostatistical Framework for
Soil Moisture Prediction in the Presence of Surface Heterogeneity. This concept of this
heterogeneity this is the big point here. So, soil moisture is spatially is spatially variable due to

complex interactions between geologic topographic vegetation and atmospheric variables.

Correct representation of subgrid soil moisture variability is crucial in improving land surface

modeling schemes and remote sensing retrievals. Note the word subgrid here, I am not talking



about gridded observations. Earlier I may have talked about like when we are discussing climate
networks and so on, we repeatedly mentioned gridded observations where the entire surface is

divided into grids and we like represent each grid by one value.

So, it is like we have a discrete number of measurements to be made, but in this case it is like it
might be continuous, that is, instead of restricting ourselves to any grid we are going to point
wise measurements in this case. In addition to the mean structure the variance and correlation of

soil moisture are affected by the underlying land surface heterogeneity.

This often violates the underlying assumption of stationarity or isotropy made by classical
geostatistical models. This is a the very important issue like we had the stationarity is one
concept which we had discussed earlier. And, when we do like linear the usual spatial
interpolation such as kriging like one of the main concept or one of the main assumptions there is

that of spatial stationarity.

But, in this case what if the stationarity does not hold? The present study proposes a
geostatistical framework to predict and upscale soil moisture in a nonstationary setting using a
flexible spatial model whose variance or correlation structure varies with changing land surface
characteristics; that is, in different parts of the region the land surface characteristics are

different.

The proposed framework is applied to model soil moisture distribution using in situ data in the
red river watershed of South Manitoba in Canada. It is seen that both the variance and correlation
structure exhibits spatial nonstationarity for the given surface heterogeneity primarily due to
vegetation and soil texture. At the beginning of crop season, soil texture plays a critical role in
drying in the drying cycle by decreasing variance and increasing correlation as the soil becomes

drier.

Once the crops begin to mature, vegetation becomes the dominant driver, promoting spatial
correlation and reducing soil moisture variance. So, like the point that we are making here is that

the variance structure the like if you consider the soil moisture in location s, and that in location

s, the variance the covariance between them is actually a function of time. In different days of



the year depending on the like depending on the cropping and so on like this variance relation is

found to be changing.

We upscale our point scale soil moisture predictions to the airborne extent and find that the
upscale soil moisture agrees well with the observed airborne data with are root mean square error
values ranging from 0.04 to 0.08. The proposed framework can be used to predict and upscale

soil moisture in heterogeneous environments.
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Spatial interpolation

» Simplest model: u(s,t) = X(s,t)*B(s) where X: covariates, p: coefficients
¥ Ignore n and estimate B based on X and Y, then model the residuals as
» Problem: loss of spatial covariance

» Alternative: Gaussian Process (defines joint Gaussian distribution over
multiple locations)

» Takes care of spatial covariance through parameterized covariance
functions

So, the last part is related to the validation. So, we are able to make point wise predictions, but
how to validate them? So, we obviously, we cannot have like we cannot have measurements at
every point. So, what is done is like they have airborne predictions like may be through remote
sensing or something like that at like very high spatial resolution and the measurement the

estimates that are made using our model are going to be validated against them.

So, now when we come to spatial interpolation, so, earlier I was mentioned that the main
challenge here is to mathematically model the local component p and the global component 0.
So, the simplest way to go about it the way people used to do it in classically the that is the
people in let us say in the fields of petroleum engineering and so on where the geostatistics is

very important.



So, what they did is they this the local component p(s,t) = X(s,t) * B(s) where X like these
are basically the covariates. So, this you can say is a vector of covariates at that location and time
point and [3(s) this is a vector of the corresponding coefficients. So, they basically model the

local component in terms of different covariates.

And, now they first ignore the n part altogether and just try to estimate this  based on X and Y,
that is they framed it as a they temporarily forgot the n and just like focused on Y, X and B as a
linear interpolation problem I mean sorry linear regression problem and solved . So, obviously,

the matching will not be perfect. So, there will be some residuals.

So, like this way you will get some value which will be differ which will not even if you are
trying to fit this value to Y it will not fit directly some error will be there. So, that residual that is
to considered as 1. In reality it is actually n plus the random noise, but let us forget the random
noise and just say that the residual is 1. And, then we the like then we try to fix some kind of a
model be it Gaussian process or something like that on the n which are obtained from the

different locations at any point of time or at different points of time.

So, it is like you first forget 1, estimate p, then whatever is the residual use interpret that as 1 and
then fit some model on it. The problem with this approach is a loss of spatial covariance. For
obvious reasons when you are these B is specific two locations that is like you are basically the p
component is like it is being measured independently at each location while that is generally not

the case.

Even the although p is the local component it is considered to be a property of a location, but
even that is expected to be spatially smooth it cannot it is not expected to vary significantly from
one location to another. So, you cannot really or it is a big like we are making a big

approximation when we are treating the p is at every location independently.

However, that is how classical geostatistics used to work. The result was the loss of spatial
covariance; the covariance structure of the field especially in of a heterogeneous field was often
lost out on. And, alternative is the least of course, the Gaussian process which we have
discovered or which we have discussed in the one of the earlier lectures. So, this takes care of

spatial covariance through parameterized covariance function.
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Modelling with Gaussian Processes
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So, like. So, so first let us consider that there are n locations S Sy S and we are considering

the y at all of them. So, now, the instead of considering them individually we consider they as a
joint distribution and like if you as you remember in case of Gaussian process like if you

consider any subset of variables their joint distribution is always Gaussian.

So, in this case also like when we are considering these n the observations of y at these n points,
their joint distribution also follows this kind of a Gaussian distribution with mean vector which
we denote by this p. So, this p is actually an it is an n-dimensional vector and the covariance

which is € which is an nXn matrix.

So, now, we can like estimate the p and C through maximum likelihood like provided we have
the provided we are considering these n observation as from the those locations where we do
have the in situ observations. So, from that we can estimate the p and the C. Now, this p if you
like you may want to express that @ = X3 the way we are saying earlier and so, basically the

these like we can get an maximum likelihood estimate of both 3 and C.

Or if you want we like we can put some kind of a like a covariance structure on C or a variance

function on C and do something with it.
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Modelling with Gaussian Processes
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» Covariance: any stationary covariance function (often isotropic)
» Stationarity assumption invalid in presence of spatial variability
» Alternative: non-stationery covariance functions

» Consider r|(s,§) is linear combination of basis functions

The like we can one that is what we many people often do is they simply consider any stationary
covariance function like when we are discussing about Gaussian processes we have already
talked about covariance function and like one like simple class of covariance functions is the like
the isotropic ones where it is like consider that the basically the covariance is like I mean the

variance is equal for in all cases like for all pairs of locations.

Now, the stationary or it can it need not be isotropic of course, it can be any stationary. By that I
mean the covariance of the observations at any two locations is only a function of the distance
between their between those two locations that is the definition of stationarity. But, if spatial
variability is there especially in the case of the data which the authors are considering in this

paper then this stationarity assumption is no longer valid.

So, the alternative is to develop some non-stationarity non-stationary covariance functions that is
instead of like C being a stationary we have to somehow make it non-stationary. And, the one
way to do it is we can this n(s, t) this the 1 component which we did not consider so far like in
the statistical like neither in the classical geostatistical sense nor in the with the Gaussian process

the way it is handled so far we have considered the 1 so far.



Now, we can consider this 1 like as a linear combination of some certain basis functions. This is

the way we where we will bring the heterogeneity in.
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Exploratory analysis

Kathuria et al,
2019

Model selection

Prediction |7)

§: Stationary model
NS: Non-stationary model

So, the this is the rough approach which has been followed in this paper. So, the approach is as
follows. First you have the in-situ measurements at some of the soil moisture at some locations at
some isolated locations. So, based on that you plot the empirical variograms for the sub regions
that is you plot the how the covariance varies as a the correlation between any two locations

varies as a function of the distance and, you do it for different sub-regions.

The you the whole region you divide into several sub-regions in each region you plot the
variogram like that and then see are the variograms different in the different region or not. If they
are not the like if there is no difference; that means, it is a; it is the like the same region it is a

homogeneous case. In that case you can just go to the like the statistic the classical approaches.

But, if the variograms are found to be different then it is necessary to like basically do something
like dividing the whole region into sub-regions maybe not explicitly, but, implicitly by
considering the drivers; drivers of what? Drivers of what causes the this kind of spatial
heterogeneity. So, like we may not know how many drivers should be there initially. So, let us

say let us say let us denote the number of such drivers as M.



So, for some like you have to play around a bit with the value of the M to know the know its
optimal value. It is like somewhat like in case of clustering algorithms the way we play around
with the value of k. So, for every value of M we have to estimate the model parameters using

some process which we will see in the later slides.

And, once you have like once you have fit at a particular model then you have to validate it, you
have to do the model evaluation if like if that works then good if not then you have to like
re-evaluate the model and this process has to go on till we are able to do a good job of the model

validation.

And, once that had once you have been able to like develop the model then what you can do is
we can you develop the like you can predict the soil moisture like at point support that is for any
given point which is of interest you can make the like point wise prediction of the soil moisture
or the target variable in general. And, then you can like for validation purposes if it is necessary

to upscale it back to the grid level, then you can do that also, ok.
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Non-stationary Process Modelling
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» Parameters cannot be estimated analytically

» Option: non-linear optimization such as Simulated Annealing
and Genetic Programming

So, now comes to the question the how to do this kind of a non-stationary process modelling. So,
this e(s) this is the here I am borrowing the notation from the paper, this e is what we have been

calling as n the global component so to say. So, let us say that at any given location s the e(s) is



like a linear combination of different drivers like this. So, just like the p we considered as a
linear combination of the different covariates, here we are considering that there are various

drivers which are like denoted by this e 1 €y €y o ej etcetera and each of them have their

weights.

Now, the weights of the different drivers are calculated in this like according to this kind of a
relation by the paper. So, this X and a these are like X are again those covariates which were used
for p also and a is another set of parameters. So, these just like the parameters of called P the
parameter for p had to be estimated. So, these o parameters also will have to be estimated for this

e ok.

Now, it can be shown that the covariance between the this 1 at any two locations like you can
express it in this particular way. So, like some kind of function has to be developed or has to be

chosen. So, there are again some standard covariance functions to be used.

Now, these the problem with the estimation of these parameters B, a etcetera is that we will not
be able to estimate them analytically; like in case of linear interpolation we could we had the f3
parameters which we could for which we had a closed form expression in this case unfortunately
we will not have it. So, the option is to go for non-linear optimization or numerical techniques

such as simulated annealing and genetic programming.
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Non-stationary Process Modelling

» Prediction at new points can be carried out using conditional Gaussian
distribution
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Now, once you have estimated the parameters now you are in a position to do the prediction at

. . . . e . P . .

new points using conditional Gaussian distribution. So, let us say that like S is a point where
you want to make the prediction of y which is the soil moisture and you they like you already
have it is measurement at n other locations. So, those all those n measurements they are clubbed

into this variable y.

So, now, remember Gaussian process whenever we have any collection of variables their joint
distribution again follows a Gaussian distribution. So, these so, now, we have total n + 1
variables 1 here and n here. So, they are this subset of n + 1 variables is again going to have a
joint Gaussian distribution which is given like whose parameters can be broken down like this

so, ok.

So, it is like the this is the (n + 1)-dimensional p vector which again can be divided into 1 + n
and this is the (n + 1)xX(n + 1) covariance matrix which also can be divided into blocks, like
this 1s 1X1, this i1s 1Xn, this is nX1 and this is nXn. So, the like basically the once you are able

to estimate these mean and covariance values then you like you for the variable which you are

. . P . .. R . .
interested in the y(S ) you can say that it is conditional distribution is again a Gaussian

distribution with particular p and particular covariance.



So, that is. So, how you come down from this joint distribution of y(SP) and y to this conditional

N P . . .
distribution of y(S )|y this is left as an exercise to you. So, I think when we had come across
Gaussian processes we had we at that time also I may have mentioned this exercise I hope you

have done it by now.

So, the question is what about what are these the p and C parameters of this conditional
distribution. So, both of them can be estimated from the p and C parameters which we had in the
original Gaussian distribution. And, it should be rather easy for you to calculate the values of
these the these blocks of C. So, you can do it easily using this covariance function which we had

discussed here, ok.

And, the for the conditional distribution the mean and the covariance parameters like for them

we have this kind of conditional values.
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Spatio-temporal variability of Soil Moisture Data
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And now coming to the results the in this paper they have done extensive experiments. So, like
they were they had mentioned two drivers the vegetation and the soil texture. These are the
drivers of the e or the n which they are talking about this M. So, in this case M = 2 as they have

two main drivers vegetation and soil texture and like and.



So, like basically they have shown how that these how these things like vary over the days of the
year and so, DOY here stands for a Day Of the Year and in fact, for different kinds of soil they
have actually plotted this to show how different the behaviour is and like this is the study area

which they have considered.

So, like this is like you can say these are the longitudes and these are the latitudes. So, this is the
north — south direction, this is the east — west direction. So, here like they are basically showing
how the different properties of the soil is changing from one location to another. So, like
basically the soil consists of these three components clay, silt and sand. So, here they are
showing the percentage of the three components in different locations and so, that way you can

see some clear regions.

So, here is in this part there is a region which is mostly sandy along this part like again a
diagonalish component which is mostly clayey and then there is one region towards the like we
this should be the south east which is more mixed and which has a significant amount of silt also,
ok. And, and remember that apart from these drivers we had considered the covariates also for
the p part and the most important covariate they have considered here is the cumulative rainfall

precipitation.

So, we from common knowledge we can understand that the rain the soil moisture is directly
related to the rainfall. Now, rainfall of course, has a specific season and like this is like across the

different days of the year this is how the rainfall is found to be varying.
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Non-stationarity of soil moisture data
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Now, also to show the non-stationarity of the soil moisture data as we talked about like it is
necessary to construct the variograms in different regions. So, here they have divided the region
as shown here into subregions 1, 2 and 3 and in each case like they have actually carried out this

kind of like variogram analysis to show the variation.

And, so, this is to basically to understand that the data is non stationary non stationary by nature.

So, these different plots are different corresponding to different days of the year.
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Interpolation by Non-stationary Model
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And, here well the so, here basically they have shown the results of the interpolation. So, these
are the observed values of the soil moisture it is plotted over the region and these are the

predicted values.

So, the mean the when they are predicting the soil moisture because it is coming with the
predictions are being done by a conditional Gaussian as shown here. So, they need to the mean is
the point wise estimate, but they also need to focus on the variance. So, they have plotted both
the mean and the variance here and it is possible to will actually correlate this the point wise

estimate the mean map with the actual observations and calculate some errors based on that.



(Refer Slide Time: 26:52)

Interpolation by Non-stationary Model
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Figure 15, Pixel by pixel comparison of observed and predicted soil moisture (SM) at airbome scale, DOY = day of year,

So, these are the error plots of the predicted values versus the observed values and you in most
cases you can see a more or less like a like a strong positive correlation. That is, you can in all
cases you can see it is like the this line the one correlation line almost all the points are like

around located around it.
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Spatial Correlation Analysis
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Figure 10, Effect of vegetation on correlation structure of soil motsture, DOY = day of year.



And, so, similarly we can have the variogram analysis of the estimated values. So, like in on like
so, like in like here we on the original data we had carried out this kind of analysis. So, similar

analysis on can be carried out where they are estimating the variance as a function of distance ok.
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national daily maps of ambient PM, s concentration
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ABSTRACT

Atypial challeage in ai polluion epidemiology is to pnfmm demled upmuu assessment for mdwﬂunls for which health data are available. To address this
problem,inthe Lstfow yeass, substantial research 4 hine leaming teehniy f
air pollution at fine spatial and temporal scales (dail, usually) wul complete coverage. However, it s not clear how much the predicted exmm yielded by the
variows methods dife, and which method generates mare reliable stimates In this pnper W aim to address this gap by evaluating & vxmy of exposure modeling
approaches, comparingthei precictive performance. Using PMas inyear 2011 over the continentalU.S. s  cas tudy, we g | maps of ambient PMy s
concentraton using: () ordinary eastsquares and nverse distance weighing (i) kigigy () taistical downscaling models, tha  spatal taistical modelsthat
us2 the (nformation contained i air quality model outputs (iv) land use regression that i, linear regression modeling approaches that leverage the information in
Geographical Informarion System (GIS) covariates and (v) machine leaming methods, such s neural networks, random forests and suppart vector regression. We
examine the various metbods' preditive perfornance via rossvaldation using Root Mean Squared Eior, Meen Absolute Devlation, Pearson comelaion, and Mean
Spatial Pearson Cormelaion. Additionally, we evaluated whether actors such as, season, urbaniciy, and levels of PM, 5 concentration low, medium or mghhmcled
the performance o the different methods. Overal, tatstical methods thatexplicitly modeled the spatial correlation,e.g. universal kriging and the downscal

ouperform all the other expasure asessment approaches regardless of season, ubanicity and P, 5 concentraton levl. We posit that the beter predictve per-
formance of spaial tatstical models over machine leaming metheds i due to the fct tha tey explictly account or spaial dependence, hus brtowing infr-
mation from nelghboring observatioas. Inlght of our indings, we suggest that future exposure assessmest methods forregional PMas incorporate laformation from
neghboring sies when deriving predictions at unsampled locations or attempt to account for spatial dependence.

And, now we come to another paper where like basically the idea is to compare the statistical and

machine learning methods for creating national daily maps of ambient PM )5 concentration. So,
like PM ,5 A8 We know is like it is a like it is a kind of particle which is used to measure the air

quality.
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Process Model vs Machine Learning

» Total 829 observation stations available, about 200 active each day
» Community Multiscale Air Quality (CMAQ): produces grjdded simulation (12 Km)
» Machine Learning models can be trained using predictors/covariates
» Longwave radiations, relative humidity, pressure, U-V winds etc

» Subset of predictors may be chosen by feature selection and sparse
regression

» CMAQ outputs can be used to boost prediction

So, again the point the task is that like they have 829 observation stations for air quality out of
which only 200 are active each day that is they have sparse in situ measurements. So, the what
they want to do is they want to develop a pan US map of this air quality that is a point wise map
of air quality based on only 829 observation stations which are we like we can say are in situ
measurements. And, not only is the total number quite low 829 compared to such a vast country

as US, but only on any given day only 200 of them are active.

Now, Community Multiscale Air Quality or CMAQ this is something of a something like a
process model. So, earlier also we have talked about process based simulation models. So, this
for air quality this is a CMAQ is a process based simulation models which produces gridded
simulations at high resolution that is 12 kilometre by 12 kilometres. So, this is the like a
traditional way of doing the like building the map, but again this is based on purely based on
physics.

So, an alternative is to use machine learning models say random forest then support vector
regression, neural networks etcetera where like at every location we can depend on certain
predictors or covariates such as longwave radiations, relative humidity, pressure, the horizon the

east-west and north-south winds etcetera all of these are known to affect the air the air quality



and PM2 5 in some way or the other. So, like we can use all these covariates linearly or

non-linearly through machine learning models to make the predictions.

Now, out of all these predictors not all of them are of course, going to be useful. So, like we can
choose the most useful ones through like feature selection such as sparse regression say things
like a lasso regression and so on which like we have discussed these earlier also where we have a
initially have a large pool of predictors from which we identify or the pull out the most important

ones.
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Now, the CMAQ outputs can actually be used to boost the predictions. So, like these like. So,
basically you have the meteorological covariates and as well as the land use covariates. So, now,
you can use something like a variable selection as we mentioned to like select only a specific

covariates.

So, in this paper they have done it and identified certain specific covariates, and then there can
be some additional covariates also. And, finally, they have the output from CMAQ the process

model which itself may be used as a covariate | mean it need not be, but it can be also used.



Next thing the next is all these things can be fed into different approaches. So, first of all there
are different machine learning methods such as I said some SVR random forest etcetera which
they have considered. Apart from that they also have IDW which is Inverse Distance Weighting
which it is basically some kind of a spatial linear spatial interpolation technique then there is

kriging statistical downscaling etcetera.

Now, the thing is when we are considering the like the vanilla machine learning algorithms like
random forest etcetera we do not consider the spatial properties. We at any given point we try to
make a point wise prediction of the like of the variable of interest; in this case the air quality, but
we do not take the spatial dependence while IDW, kriging etcetera they actually take the spatial

the spatial dependence into account.

So, like this is the universal kriging algorithm which they have considered. So, like here you can

take a look at it.
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Mapping of PM2.5

(a) Log CMAQ Annual Mean (b) Log AQS Annual Mean

05 10 15 20 25 30 05 10 15 20 25 30

Fig. 1. Annual mean log PM,5 concentration for year 2011 in log yg/m” as estimated by CMAQ output versus AQS monitor data.

So, now like this basically shows the map of this PM2 5 On this side you can see what is

obtained from the CMAQ and like these are the observations. So, like you can see this point wise

observations. These the points which you can see these are the stations.



As you can see that there are not only are they sparse, but they are unevenly distributed in the
like in this east coast as well as the west coast there is a dense region, but the in the vast parts of
Central America there is there are very few of such observation stations. Now, this like, but if
you somehow using the CMAQ process model like if you are able to do it you can see this kind

of like this kind of a map.
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Mapping of PM2.5

(a) IDW (b) Universal Kriging
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Fig. 4. Predicted log PM, concentration for January 1, 2011 using Inverse Dist .mw mgnuwyul rsal Kriging with CMAQ as only predictor, the
Downscaler model and Random Forests. Points displayed in the map represent active.

And, now like so, here is we are comparing the maps obtained from different approaches. This is
IDW — Inverse Distance Weighting, this is universal kriging, this is downscaler another like
another algorithm and this is random forest which is a machine learning. And, as you can see in
all the different cases we get significantly different maps. The like for example, in case of
random forest we see like except for a few locations it is like almost everything is seems roughly

the same.

In some of the like in this case downscaler like here most of the region seems to be having very
low while in this case in case of IDW we see significant amount of spatial variations, in this
universal kriging also we see that. And, it actually turns out that like when they plot the results it
turns out that like the best results are obtained from the IDW universal kriging etcetera and not

from the machine learning algorithms.



The in fact, that is because the machine learning model the models random forest etcetera do not
in the in their original form they do not take into account the spatial dependence which is
actually taken into account by kriging and so on. Further it is shown that if these CMAQ outputs

if these are used as another of the predictors that actually helps in the prediction.

That is, rather than depending purely on the these meteorological covariates if these CMAQ
outputs are also taken into account while making the predictions that actually helps the

prediction improves the accuracy.
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» Soil Moisture exhibits considerable nonstationary behavior at subgrid
scales, and stationary geostatistical methods fail to capture this behavior

» Surface controls like vegetation and rainfall can be used to construct
covariance functions that account for nonstationarity

» Statistical methads like Kriging can outperform ML algorithms by

better utilizing spatial information

So, basically the point to be taken home here is that are as follows. So, first of all the soil
moisture exhibits in the first paper so, we found that soil moisture exhibits considerable non
stationary behaviour at subgrid scales and stationary geostatistical methods fail to capture this.
Surface control like vegetation, soil texture and covariates like rainfall, they can be used to

construct covariance functions that account for the non stationarity.

And, finally, statistical methods like kriging, they can outperform vanilla machine learning
algorithms by utilizing spatial information. So, like this is not a criticism of machine learning
algorithms here it is just to say that machine learning algorithms in their original form may not
be suitable like very successful in this in case of this spatiotemporal data unless they take into
account the spatial information. So, that is why it is necessary to tweak them in that in that

particular way.

So, with that I come to the end of this lecture and we will continue this discussion of various
using various machine learning methods to answer questions in Earth Sciences in the coming

lecture.

So, till then, bye.






