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Hello everyone, welcome to Lecture 22 of this course on Machine Learning for Earth System

Science. So, we today we are going to talk about Hierarchical Bayesian Models for

Spatio-Temporal Processes, we are still in Module 3 where we are discussing Machine Learning

for Discovering New Insights in the earth sciences.

(Refer Slide Time: 00:45)

So, the concepts which we are going to cover today are as follows; hierarchical Bayesian models

for sparse observations of latent processes. Secondly, the Markov Random Fields for priors on

latent spatio-temporal variables and third estimation of latent process variables using the iterative

approach.



(Refer Slide Time: 01:06)

So, first of all, we may need to estimate the property or a variable that is not directly measurable.

So, we have seen some examples of this in earlier lectures also, for example, in the previous

lecture we talked about the heat wave, the binary variable. So, that is not directly measurable

there can also be other.

So, that is of course, a conceptual variable that is like that does not exist, but there can be actual

variables which exist, but they cannot be measured directly that is or even if they or like they can

be we can measure some noisy versions of them, but not, but you like the noise components

might be quite significant.

So, we have we may have some sparse observations of some related variable that is instead of

measuring that thing that variable directly we can focus on some related variable for which we

may have some sparse observations, some sparse observation may be either sparse in either

space or in time.

If it is in space then we call it in-situ observations, where like something like we have suppose

we are measuring global temperature, then we can have temperatures only at certain specific

locations which may be distributed all over the world, but they are only specific locations. So,



from that we have to somehow from those sparse or in-situ observations they like we have to get

the global picture somehow.

The general approach is that express the observable variables using some kind of stochastic

models and the properties of the latent variables are also modeled using stochastic models. Now,

the inference is done using some kind of MCMC or Gibbs sampling to optimize or and estimate

the latent values. So, remember we had talked about in one of the lectures in Module 1 we had

talked about the observation model, data model, the parameter model and so on. So, this is

related to that same method.

(Refer Slide Time: 03:10)

So, let us consider a couple of use cases of this. So, for the first paper which we will discuss

today this is a Bayesian hierarchical model for climate change detection and attribution.

So, regression-based detection and attribution methods continue to take a central role in the study

of climate change and its causes. Here we propose a novel Bayesian hierarchical solution to this

problem, which allows us to address several open methodological questions. Specifically, we

take into account the uncertainties in the true temperature change due to imperfect

measurements, the uncertainty in the true climate signal under different forcing scenarios due to

the availability of only a small number of climate model simulations and the uncertainty



associated with estimating the climate variability covariance matrix, including the truncation of

the number of EOFs in the in this covariance matrix.

So, this covariance matrix which they are talking about this is related to the variability. So, like

the when we are considering the that is we are considering the various or any particular variables

related to the climate we have only some observations and in the other locations or time points

we have to estimate it using the by using the covariance structure or by knowing the covariance

relations with the other locations and times where the observations are present. However, these

covariance structures are often not well known or cannot be well represented they may be known

very approximately.

So, we apply Bayesian model averaging to assign optimal probabilistic weights to different

possible truncations and incorporate all uncertainties into the inference of regression coefficients.

We provide an efficient implementation of our method in a software package.

(Refer Slide Time: 05:12)

So, basically the idea is as follows, corresponding to the vector of true temperature changes.𝑦

So, let us say that in like in different places or different locations in the world the temperature

change that will that is expected to take place in a given period of time that is like those values



are taken in a vector called and then we have vectors representing the𝑦 𝑥
1
,  𝑥

2
,  ...,  𝑥

𝑚

temperature change that would have happened under the different forcing scenarios.𝑚

So, like we have like let us say like we do not know which like what exactly will happen in𝑚

future, but let us say we have simulations of that and then in like each a like in each of the𝑚

cases we have some like in each of the scenarios also we may have several observations, because

now all these observations or sorry all these simulations they have some they as uncertainty

associated with it even in one particular scenario let us say we need to have several𝑥
1

simulations or several runs of simulations.

And the like the that is what that in some sense captures the uncertainty of the simulations or the

spread of the simulations because like even in a particular scenario we are never able to say for

certainty what kind of change will take place. So, that is why we need an ensemble of values

from one scenario and then on top of that we need an ensemble of scenarios.

So, let us say that we have scenarios and a from each scenario we have several observations.𝑚

Also, denote by as covariance matrix characterizing the internal climate change variable𝐶 𝑛×𝑛

climate variability without any forcing. So, this is the covariance which we have already talked𝐶

about. Now so, there is this kind of a, so first of all let us say that the true temperature change 𝑦

it is a like it follows a Gaussian distribution whose like whose mean is can be expressed as a

linear combination of the different scenarios.

So, we can say that each scenario has certain probability. So, like we do not know those

probabilities, but if we knew them then the like we could say that the actual change that will

happen is some kind of linear the probability weighted linear combination of these individual

scenarios and then of course, the covariance is there.

Now, if you consider the, so like. So, I already said that there are so many different observations,

sorry yeah so many different runs of simulation. So, in like in any particular run of a simulation

let us say that is like the true value.𝑦
𝑖



So, sorry is the true value and is what is observed and so it like we can say it follows this𝑦 𝑦
𝑖

kind of a Gaussian distribution. So, this is like you can say this is the is the measurement of𝑦
𝑖

𝑦

the true variability at all locations across the world. So, like for that we again we use another

Gaussian distribution and then even for the . So, like I already said that there are sorry there𝑥'𝑠 𝑗

are scenarios and in each scenario there are certain number of runs or the simulation runs. So,𝑚

let us say those runs are denoted by this by this variable .𝑙

So, in the run, the is let us say is a particular location then the temperature change at any𝑙𝑡ℎ 𝑥
𝑖

𝑖

given location in the run given all the like given the temperatures at all the temperature𝑖 𝑙𝑡ℎ

changes at all other locations that again follows a Gaussian distribution like for which we need

this as the spatial the covariance structure, because the covariance what it takes into account is𝐶

the spatial relationship. So, and are two locations. So, this in a sense in a sense incorporates𝑖 𝑗 𝐶

the variance between the covariance between them.

So, let us. So, we have which is a collection of these that of the actual variables like this and𝑦 𝑦

we have that is the different runs from the simulation runs from the different like according to𝑥

the different scenarios. So, like we have number of from the simulation 1, we have𝑙
1

𝑥'𝑠 𝑙
2

number of from the scenario 2 and we have number of from the scenario and so on𝑥'𝑠 𝑙
𝑚

𝑥'𝑠 𝑚

ok.
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So, basically we so we have the. So, both and are random variables in a sense. So, we write𝑥 𝑦

the joint distribution in terms of the different model parameters. So, we factorize the joint

distributions as follows. So, first of all we want to have a like a distribution . So, this is for the𝑥

model runs. So, here we this joint distribution can be factorized in a like in a particular way,

again over all the simulation all the scenarios and each run of the scenario. So, like assuming all

the simulation runs to be independent we can like just express the each of the individual

simulations as products of each other.

And then again within that we can do the simulation like we can express it in this way and

similarly for we can express. So, like we already know the relation between and so this is𝑦 𝑦 𝑥

the relation. So, it can be expressed in another way also. So, now the thing is we have so many

other variables like this and so on like that is what we are finally, interested in is the joint𝐶

distribution of and . So, so the and all these things that is itself we can write it in using𝑦 𝑥 𝐶 𝐶

this as a etcetera, where these are all model parameters.𝐵𝐾𝐵' 𝐵𝐾, σ

So, these all those model parameters are like they are compressed within this and is like. So,θ
𝑟

𝑟

like this for we can consider. So, is the covariance matrix, but we can like it is a it will have𝐶 𝐶

a certain rank, but we can go for a low rank approximation of . So, in like whenever we are𝑟



considering any particular model we will consider only a certain number of or a only a certain

number of principal components. So, that number let that number be .𝑟

So, that the full instead of having the full covariance matrix which might be difficult to measure

we can go for a like a truncated or as they say a low rank version of the covariance matrix. So,

these are the like the truncated model parameters and so what also these these are another setβ

of model parameters. So, what we need to do is we like we need to like estimate these through

the process of Gibbs sampling. So, like we do we again will not go into the details of the Gibbs

sampling here, what we will instead do is that we will go for this Bayesian like inference.

(Refer Slide Time: 13:12)

So, like once that. So, once we do the Bayesian inference then we have the results and here like

this green and the red curves these indicates the yeah these are like if you see the posterior

distributions the anthropogenic forcing in red and the natural forcings in green for eachβ
1

β
2

EOF truncation.

So, so like this is the different scenarios. So, like in the in one scenario where we do not have any

human induced impacts. So, like here is what the that is the posterior distribution in that case

looks like and in this I mean the posterior distribution on y and in this case we are talking about



the other scenario where we have the posterior distribution from the red that is the when we are

considering the anthropogenic changes.

So, as you can see that there is a clear difference between the temperature in the absence of in the

according to natural forcings which is this green curve and in the presence of anthropogenic or

human induced forces this is the curve and so on.

(Refer Slide Time: 14:27)

So, next we come to another similar case study where we use Markov random fields for

modeling of for mapping of geofluid distributions from seismic velocity structures.

So, this like in this domain of seismology. So, here the we like in this paper we applied Markov

random field model, which is a Bayesian probabilistic method to the spatial inversion of porosity

and pore shape in rocks from an observed seismic structure. Gaussian Markov chains were used

to incorporate the spatial continuity of the porosity and aspect ratio of the pore shape.

Synthetic inversion tests were able to show the effectiveness and validity of the proposed model

by appropriately reducing the statistical noise from the observations. The proposed model was

also applied to natural data sets of the seismic velocity structures in the observations then so on.



(Refer Slide Time: 15:30)

So, like basically there are two kinds of seismic waves the waves which are fast the pressure𝑃

waves these are the primary seismic waves and then there are the waves which are the slow𝑆

shear waves these are they are the secondary waves.

So, we have observations of their velocities of both the waves and the waves at different𝑃 𝑆

places on the earth at certain depths and so on. Now, there are some properties of the earth like

earth’s mantle these are called the porosity and the effective aspect ratio. So, both of these factors

they these properties they impact the velocities of the seismic waves.

Now, the task here is that based on the sparse observations of the seismic wave velocities we

need to estimate the porosity and effective aspect ratio in different places in different points of

the like earth’s interior. The now the porosity property has spatial autocorrelation; that means, at

two locations which are close to each other the special properties are likely to be very similar.

So, what we need to do is to define a graphical model with velocity nodes and porosity nodes

and then define the potential functions approximately, I mean not only porosity nodes, but also

the this aspect the effective aspect ratio nodes.

So, like some of the nodes will be corresponding to the observed variables and some will be

corresponding to the latent or unobserved variables.
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So, you if you remember the various graphical models which we had studied in one of the earlier

lectures. So, there are like for Markov random fields we have some nodes corresponding to

variables that are observed and we will also have some nodes corresponding to the variables that

are not observed. And then there will be edges between different kinds of variables and each of

those edges will have the edge potential functions also.

So, the like first of all the thing is we like we can express the and that is the velocity and𝑉
𝑝 

𝑉
𝑠

𝑝

the velocity as some functions of the two things we are interested in and , is the porosity𝑠 Φ α Φ

and is the effective aspect ratio. So, now let us say that these functions and let us say thatα 𝑓
𝑝

𝑓
𝑠

we already know those functions from our domain knowledge of seismology, but we do not

know and at all locations.Φ α

So, now what we do is. So, like first of all we like we define some kind of a probability

distribution on and at any location. So, let us say there are total locations or grids where𝑉
𝑝 

𝑉
𝑠

𝑁 

we will like we will do the do our study and let us also say that in each grid this the values weΦ

have unique and values. Also let us further assume that the and the these velocitiesΦ α 𝑉
𝑝 

𝑉
𝑠

they are independent of each other so, that this joint distribution can be factorize as a product of

their marginal distributions.



Then what we finally, have to do is or what we intend to do is to create the posterior distribution

on this porosity and aspect ratio depending on the observations that we have, So, that is to be

written in this way now. So, like our aim is to estimate this kind of a posterior distribution. So,

for this purpose we define what is known as the energy of the Markov random field where this

energy the like.

If you remember in a Markov random field the joint distribution is a product of the different click

potential functions now instead like a like in a normal graph a click may in may just mean that

individual nodes which are clicks of size 1 and edges which are clicks of size 2. So, for like. So,

for that we need to define the.

So, the node potentials are there on top of that we put the edge potential functions and the edge

potential. So, there are two kinds of edges one is the edge between 2 between the variables orΦ

the variables at different locations and then there are edges between the variables and theα Φ 𝑉
𝑝

variables and variables and so on.𝑉
𝑠

So, the in case of those the later kind of edges where like the like at any location the

corresponding is connected to the properties and . So, for such edges we have like the𝑉
𝑝

Φ α

edge potential functions and then for the edges that are connecting to variables we have thisΦ

kind of a edge potential function. So, as you can see . So, let us say that like it is anΦ𝑖 − Φ𝑗

arrow between the variables at location and location . So, between them we just simply haveΦ 𝑖 𝑗

a the edge potential is simply the squared difference.

So, like if two of them are close to each other then like that should have a high probability those

five values are close to each other that should have a high probability compared to the situation

where the values are broadly different. So, this is based on the spatial autocorrelation whichΦ

we talked about. So, a similar property also holds for and of course, the there is a varianceα

component for both and . So, they are encoded like this.Φ α

So, accordingly we have this kind of a the what is called the energy function of the Markov

random field which is nothing, but a representation of the joint probability distribution of all

these random variables. So, these these are known as the partition functions that are𝑍
Φ

,  𝑍
α



necessary to make sure that it is a indeed a joint like a valid probability distribution that is the

sum of these values of the energy values for the different combinations they all add up to one in

the proper way.

(Refer Slide Time: 22:01)

So, that now what we need to do is so, first of all there are these the variables and the latentΦ α

variables and then there are the different hyper parameters these and so on, I mean also theseσ

these functions they also they may have their own hyper parameters which have to be 𝑓
𝑝
,  𝑓

𝑠

estimated. So, what is first done is that this the like all the parameters let us say we represent by

. So, for the time being let us ignore the latent variables and let us try just try to estimate aθ

posterior distribution on the hyper parameters based on the observations and .𝑉
𝑝

𝑉
𝑠

So, the like we do this kind of marginalization where we integrate out the all possible values of

and and then we get a posterior distribution of the parameters. Now, this kind of integrationΦ α

this cannot be done numerically because it is may that might be intractable. So, this kind of

integration is again done through MCMC techniques.

So, that is based on sampling. So, once we get this that is the posterior distribution of the𝑓
θ

parameters, then we choose the map estimate of the all the parameters that is the those the



parameters which maximize the value of this posterior distribution, that in a sense gives us the

optimal values of the parameters.

Then using the optimal values of the parameters again we calculate the map estimates of andΦ α

. So, note that and are not individual values, but they are like they are defined separately forΦ α

each of the different locations that we are considering. So, that we will get values of and𝑛 Φ 𝑛

values of and like. So, like we need to do it in many trials and we can expect that like as we orα

many iterations and as we do the further and further iterations we can see the like convergence

like.

So, unless the convergence happens we cannot expect to find the like any optimal values and like

here the as their studies shows their experiments show that as they keep on doing more and more

trials by this like using these optimization like they see the some kind of convergence of the root

mean square error; that means. So, like in the like in the held out set which or rather on which

they are validating they find that the using these approach the estimated value of and areΦ α

coming close to the unknown values.

(Refer Slide Time: 24:37)

And. So, like. So, this is this might be a possible plot of the and which the so, theΦ

observational data are of course, and . So, like the this primary wave it has higher velocities𝑉
𝑝

𝑉
𝑠



up to 8 kilometers per second, while the secondary wave it is usually slower about 4 kilometers

per second. So, this is let us say over a spatial region. So, as you can see this is graded data at

different locations they the and vary.𝑉
𝑝

𝑉
𝑠

So, using this and the corresponding target variables are and let us say this is their these areΦ α

their spatial distributions. So, this is like this is the training data this is what is I mean this andΦ

is what is already known by some kind of measurement. So, now, what we need to do is toα

based on these observations of and we need to estimate the and . So, we can either go𝑉
𝑝

𝑉
𝑠

Φ α

for some kind of deterministic method which was known to the seismology researchers earlier

that is where they basically tried to like invert this function and in some ways.𝑓
𝑝

𝑓
𝑠

And so, like this is the kind of estimates of and which they get using those methods andΦ α

these are the estimates of and which is obtained by the MRF methods. So, as you canΦ α

understand in the like you can compare these plots or these maps with the true the targets the or

the true values and you can see that the estimated values are like very similar to what is the

actual values, but if you compare these maps which are obtained by the old deterministic

methods you can see that there is hardly any similarity.

(Refer Slide Time: 26:34)



So, that shows that using this MRF model we are able to get a much better estimate of the maps

of the unknown variables. So, these are the references of the two papers that we discussed today.

(Refer Slide Time: 26:45)

So, the key points to be taken away is like. So, there are the basically that is the key point these

are the key points to be taken away which we discussed that Markov random fields are capable

of like incorporating the spatial autocorrelations and this in turn helps us to identify the relation

the or estimate the various unknown variables.

And secondly, like when we have observations of or multiple observations none of which are

reliable of a particular quantity we can express the particular quantity as a linear combination of

all those observations along with some uncertainty estimates and then the not only the linear

coefficients for the for that relation as well as those coefficients they can all be estimated using

some kind of a like using the inference algorithms like Gibbs sampling and optimization.

So, that ends us that brings us to the end of this lecture, in the further lectures we will see some

more applications of machine learning to for a to discover new insights in earth sciences. So, till

then bye.


