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Hello everyone, welcome to Lecture 22 of this course on Machine Learning for Earth System
Science. So, we today we are going to talk about Hierarchical Bayesian Models for
Spatio-Temporal Processes, we are still in Module 3 where we are discussing Machine Learning

for Discovering New Insights in the earth sciences.
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CONCEPTS COVERED

» Hierarchical Bayesian models for sparse observation of latent process
» Markov Random Fields for priors on latent spatio-temporal variables

» Estimation of latent process variables using iterative approach

So, the concepts which we are going to cover today are as follows; hierarchical Bayesian models
for sparse observations of latent processes. Secondly, the Markov Random Fields for priors on
latent spatio-temporal variables and third estimation of latent process variables using the iterative

approach.
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Hierarchical Bayesian Models for spatio-temporal Processes

» We may need to estimate a property or variable that is not directly measurable
» We can have sparse observations of some related variable

» Approach: express the observable variables using stochastic models

» Properties of the latent variables too modelled using stochastic models

» Inference using MCMC (Gibbs Sampling) or optimization to estimate
latent values

So, first of all, we may need to estimate the property or a variable that is not directly measurable.
So, we have seen some examples of this in earlier lectures also, for example, in the previous
lecture we talked about the heat wave, the binary variable. So, that is not directly measurable

there can also be other.

So, that is of course, a conceptual variable that is like that does not exist, but there can be actual
variables which exist, but they cannot be measured directly that is or even if they or like they can
be we can measure some noisy versions of them, but not, but you like the noise components

might be quite significant.

So, we have we may have some sparse observations of some related variable that is instead of
measuring that thing that variable directly we can focus on some related variable for which we
may have some sparse observations, some sparse observation may be either sparse in either

space or in time.

If it is in space then we call it in-situ observations, where like something like we have suppose
we are measuring global temperature, then we can have temperatures only at certain specific

locations which may be distributed all over the world, but they are only specific locations. So,



from that we have to somehow from those sparse or in-situ observations they like we have to get

the global picture somehow.

The general approach is that express the observable variables using some kind of stochastic
models and the properties of the latent variables are also modeled using stochastic models. Now,
the inference is done using some kind of MCMC or Gibbs sampling to optimize or and estimate
the latent values. So, remember we had talked about in one of the lectures in Module 1 we had
talked about the observation model, data model, the parameter model and so on. So, this is

related to that same method.
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Bayesian Hierarchical Model

A Bayesian hierarchical model for climate change detection
and attribution

Matthias Katzfuss', Dorit Hammerling?' "', and Richard L. Smith3#

' Department of Statistics, Texas A&M University, College Station, Texas, USA, ?Institute for Mathematics Applied to
Geosciences, National Center for Atmospheric Research, Boulder, Colorado, USA, *Statistical and Applied Mathematical
Sciences Institute, Research Triangle Park, North Carolina, USA, *Department of Statistics and Operations Research,
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Abstract Regression-based detection and attribution methods continue to take a central role in the
study of climate change and its causes. Here we propose a novel Bayesian hierarchical approach to this
problem, which allows us to address several open methodological questions. Specifically, we take into
account the uncertainties in the true temperature change due to imperfect measurements, the uncertainty
in the true climate signal under different forcing scenarios due to the availability of only a small number of
climate model simulations, and the uncertainty associated with estimating the climate variability covariance
matrix, including the truncation of the number of empirical orthogonal functions (EOFs) in this covariance
matrix. We apply Bayesian model averaging to assign optimal probabilistic weights to different possible
truncations and incorporate all uncertainties into the inference on the regression coefficients. We provide
an efficient implementation of our method in a software package and illustrate its use with a realistic
application,

So, let us consider a couple of use cases of this. So, for the first paper which we will discuss

today this is a Bayesian hierarchical model for climate change detection and attribution.

So, regression-based detection and attribution methods continue to take a central role in the study
of climate change and its causes. Here we propose a novel Bayesian hierarchical solution to this
problem, which allows us to address several open methodological questions. Specifically, we
take into account the uncertainties in the true temperature change due to imperfect
measurements, the uncertainty in the true climate signal under different forcing scenarios due to

the availability of only a small number of climate model simulations and the uncertainty



associated with estimating the climate variability covariance matrix, including the truncation of

the number of EOFs in the in this covariance matrix.

So, this covariance matrix which they are talking about this is related to the variability. So, like
the when we are considering the that is we are considering the various or any particular variables
related to the climate we have only some observations and in the other locations or time points
we have to estimate it using the by using the covariance structure or by knowing the covariance
relations with the other locations and times where the observations are present. However, these
covariance structures are often not well known or cannot be well represented they may be known

very approximately.

So, we apply Bayesian model averaging to assign optimal probabilistic weights to different
possible truncations and incorporate all uncertainties into the inference of regression coefficients.

We provide an efficient implementation of our method in a software package.
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Bayesian Hierarchical Model

Corresponding to the vector y of true temp hanges, we havevectorsx,. ... ,, representing the (true)
temperature changes that would have happened under m different forcing scenarios. Let X = (x;, ... Xy,).
Also, denate by € annxn covariance matrix characterizing the internal climate variability (withoutany forcing).

We write the commonly assumed linear regression model in the form of a conditional distribution,
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So, basically the idea is as follows, corresponding to the vector y of true temperature changes.
So, let us say that in like in different places or different locations in the world the temperature

change that will that is expected to take place in a given period of time that is like those values



are taken in a vector called y and then we have vectors I representing the
m

temperature change that would have happened under the m different forcing scenarios.

So, like we have like let us say m like we do not know which like what exactly will happen in
future, but let us say we have m simulations of that and then in like each a like in each of the
cases we have some like in each of the scenarios also we may have several observations, because
now all these observations or sorry all these simulations they have some they as uncertainty

associated with it even in one particular scenario let us say x | we need to have several

simulations or several runs of simulations.

And the like the that is what that in some sense captures the uncertainty of the simulations or the
spread of the simulations because like even in a particular scenario we are never able to say for
certainty what kind of change will take place. So, that is why we need an ensemble of values

from one scenario and then on top of that we need an ensemble of scenarios.

So, let us say that we have m scenarios and a from each scenario we have several observations.
Also, denote by C as nXn covariance matrix characterizing the internal climate change variable
climate variability without any forcing. So, this C is the covariance which we have already talked
about. Now so, there is this kind of a, so first of all let us say that the true temperature change y
it is a like it follows a Gaussian distribution whose like whose mean is can be expressed as a

linear combination of the different scenarios.

So, we can say that each scenario has certain probability. So, like we do not know those
probabilities, but if we knew them then the like we could say that the actual change that will
happen is some kind of linear the probability weighted linear combination of these individual

scenarios and then of course, the covariance is there.

Now, if you consider the, so like. So, I already said that there are so many different observations,
sorry yeah so many different runs of simulation. So, in like in any particular run of a simulation

let us say that Y, is like the true value.



So, sorry y is the true value and Y, is what is observed and so it like we can say it follows this
kind of a Gaussian distribution. So, this is like you can say this is the Y, is the measurement of y

the true variability at all locations across the world. So, like for that we again we use another
Gaussian distribution and then even for the x's. So, like I already said that there are j sorry there
are m scenarios and in each scenario there are certain number of runs or the simulation runs. So,

let us say those runs are denoted by this by this variable L.

: th : . : :
So, in the [ run, the X is let us say i is a particular location then the temperature change at any

given location I in the I™ run given all the like given the temperatures at all the temperature
changes at all other locations that again follows a Gaussian distribution like for which we need
this C as the spatial the covariance structure, because the covariance what it takes into account is
the spatial relationship. So, i and j are two locations. So, this C in a sense in a sense incorporates

the variance between the covariance between them.

So, let us. So, we have y which is a collection of these that of the actual y variables like this and
we have x that is the different runs from the simulation runs from the different like according to

the different scenarios. So, like we have [ ) number of x's from the simulation 1, we have [ 5
number of x's from the scenario 2 and we havelm number of x's from the scenario m and so on

ok.
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Bayesian Inference on Hierarchical Model
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So, basically we so we have the. So, both x and y are random variables in a sense. So, we write
the joint distribution in terms of the different model parameters. So, we factorize the joint
distributions as follows. So, first of all we want to have a like a distribution x. So, this is for the
model runs. So, here we this joint distribution can be factorized in a like in a particular way,
again over all the simulation all the scenarios and each run of the scenario. So, like assuming all
the simulation runs to be independent we can like just express the each of the individual

simulations as products of each other.

And then again within that we can do the simulation like we can express it in this way and
similarly for y we can express. So, like we already know the relation between y and x so this is
the relation. So, it can be expressed in another way also. So, now the thing is we have so many
other variables like this € and so on like that is what we are finally, interested in is the joint
distribution of y and x. So, so the C and all these things that is C itself we can write it in using

this as a BKB' etcetera, where BK, o these are all model parameters.

So, these all those model parameters are like they are compressed within this BT and r is like. So,

like this for C we can consider. So, C is the covariance matrix, but we can like it is a it will have

a certain rank, but we can go for a low rank approximation of r. So, in like whenever we are



considering any particular model we will consider only a certain number of or a only a certain

number of principal components. So, that number let that number be r.

So, that the full instead of having the full covariance matrix which might be difficult to measure
we can go for a like a truncated or as they say a low rank version of the covariance matrix. So,
these are the like the truncated model parameters and so what also these {3 these are another set
of model parameters. So, what we need to do is we like we need to like estimate these through
the process of Gibbs sampling. So, like we do we again will not go into the details of the Gibbs

sampling here, what we will instead do is that we will go for this Bayesian like inference.
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Causal Inference based on Conditional Independence
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So, like once that. So, once we do the Bayesian inference then we have the results and here like
this green and the red curves these indicates the yeah these are like if you see the posterior

distributions 3 ) the anthropogenic forcing in red and 8 5 the natural forcings in green for each
EOF truncation.
So, so like this is the different scenarios. So, like in the in one scenario where we do not have any

human induced impacts. So, like here is what the that is the posterior distribution in that case

looks like and in this I mean the posterior distribution on y and in this case we are talking about



the other scenario where we have the posterior distribution from the red that is the when we are

considering the anthropogenic changes.

So, as you can see that there is a clear difference between the temperature in the absence of in the
according to natural forcings which is this green curve and in the presence of anthropogenic or

human induced forces this is the curve and so on.
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Markov Random Field over estimation from observations

Markov random field modeling for mapping
geofluid distributions from seismic velocity
structures

Tatsu Kuwatani' ", Kenji Nagata?, Masato Okada®* and Mitsuhiro Toriumi*

Abstract

We applied the Markov random field model, which is a kind of a Bayesian probabilistic method, to the spatial inversion
of the porosity and pore shape in rocks from an observed seismic structure. Gaussian Markov chains were used to
incorporate the spatial continuity of the porasity and the aspect ratio of the pore shape. Synthetic inversion tests were
able to show the effectiveness and validity of the proposed medel by appropriately reducing the statistical noise from
the observations. The proposed model was akso applied to natural data sets of the seismic velocity structures in the
mantle wedge beneath northeastern Japan, under the asiumptions that the fluid was melted and the temperature
and petrologic structures were uniformly distributed. The result shows a significant difference between the volcanic
front and the forearc regions, at a depth of 40 km. Although the parameters and material properties will need to be
determined more precisely, the Markov random field model presented here can serve as a basic inversion framework
for mapping geofluids.

Keywords: Bayesian estimation; Markov random field; Geofluid; Mantle wedge; Data-driven science

So, next we come to another similar case study where we use Markov random fields for

modeling of for mapping of geofluid distributions from seismic velocity structures.

So, this like in this domain of seismology. So, here the we like in this paper we applied Markov
random field model, which is a Bayesian probabilistic method to the spatial inversion of porosity
and pore shape in rocks from an observed seismic structure. Gaussian Markov chains were used

to incorporate the spatial continuity of the porosity and aspect ratio of the pore shape.

Synthetic inversion tests were able to show the effectiveness and validity of the proposed model
by appropriately reducing the statistical noise from the observations. The proposed model was

also applied to natural data sets of the seismic velocity structures in the observations then so on.
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Markov Random Field over estimation from observations

» Seismic P wave: fast pressure waves (primary)
» Seismic S wave: slow shear waves (secondary)

» Observations: Vp, Vs: seismic wave velacities of solid-fluid composite media
» Functions of porosity and effective aspect ratio with uncertainty
» Porosity property has spatial autocorrelation

» Define graphical model with velocity-nodes and porosity nodes, define
potential functions approximately

....

So, like basically there are two kinds of seismic waves the P waves which are fast the pressure
waves these are the primary seismic waves and then there are the S waves which are the slow

shear waves these are they are the secondary waves.

So, we have observations of their velocities of both the P waves and the S waves at different
places on the earth at certain depths and so on. Now, there are some properties of the earth like
earth’s mantle these are called the porosity and the effective aspect ratio. So, both of these factors

they these properties they impact the velocities of the seismic waves.

Now, the task here is that based on the sparse observations of the seismic wave velocities we
need to estimate the porosity and effective aspect ratio in different places in different points of
the like earth’s interior. The now the porosity property has spatial autocorrelation; that means, at

two locations which are close to each other the special properties are likely to be very similar.

So, what we need to do is to define a graphical model with velocity nodes and porosity nodes
and then define the potential functions approximately, I mean not only porosity nodes, but also

the this aspect the effective aspect ratio nodes.

So, like some of the nodes will be corresponding to the observed variables and some will be

corresponding to the latent or unobserved variables.
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Markov Random Field over estimation from pbservations
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So, you if you remember the various graphical models which we had studied in one of the earlier
lectures. So, there are like for Markov random fields we have some nodes corresponding to
variables that are observed and we will also have some nodes corresponding to the variables that
are not observed. And then there will be edges between different kinds of variables and each of

those edges will have the edge potential functions also.

So, the like first of all the thing is we like we can express the Vp and V. that is the p velocity and

the s velocity as some functions of the two things we are interested in ® and a, P is the porosity

and «a is the effective aspect ratio. So, now let us say that these functions f . and f s let us say that

we already know those functions from our domain knowledge of seismology, but we do not

know @ and « at all locations.

So, now what we do is. So, like first of all we like we define some kind of a probability

distribution on Vp and VS at any location. So, let us say there are total N locations or grids where

we will like we will do the do our study and let us also say that in each grid this the ® values we

have unique @ and o values. Also let us further assume that the Vp and v the these velocities

they are independent of each other so, that this joint distribution can be factorize as a product of

their marginal distributions.



Then what we finally, have to do is or what we intend to do is to create the posterior distribution
on this porosity and aspect ratio depending on the observations that we have, So, that is to be
written in this way now. So, like our aim is to estimate this kind of a posterior distribution. So,
for this purpose we define what is known as the energy of the Markov random field where this

energy the like.

If you remember in a Markov random field the joint distribution is a product of the different click
potential functions now instead like a like in a normal graph a click may in may just mean that
individual nodes which are clicks of size 1 and edges which are clicks of size 2. So, for like. So,

for that we need to define the.

So, the node potentials are there on top of that we put the edge potential functions and the edge
potential. So, there are two kinds of edges one is the edge between 2 between the @ variables or

the o variables at different locations and then there are edges between the ® variables and the Vp

variables and V' variables and so on.
S

So, the in case of those the later kind of edges where like the like at any location the

corresponding Vp is connected to the properties @ and a. So, for such edges we have like the
edge potential functions and then for the edges that are connecting to @ variables we have this

kind of a edge potential function. So, as you can see @ — @', So, let us say that like it is an
arrow between the ® variables at location i and location j. So, between them we just simply have

a the edge potential is simply the squared difference.

So, like if two of them are close to each other then like that should have a high probability those
five values are close to each other that should have a high probability compared to the situation
where the ® values are broadly different. So, this is based on the spatial autocorrelation which
we talked about. So, a similar property also holds for a and of course, the there is a variance

component for both ® and a. So, they are encoded like this.

So, accordingly we have this kind of a the what is called the energy function of the Markov
random field which is nothing, but a representation of the joint probability distribution of all

these random variables. So, these Z o Za these are known as the partition functions that are



necessary to make sure that it is a indeed a joint like a valid probability distribution that is the
sum of these values of the energy values for the different combinations they all add up to one in

the proper way.
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Markov Random Field over estimation from observations

» MAP estimate of hyperparameters done by analytically or by MCMC

» The chosen values of hyperparameters used for MAP estimates of ¢ and a
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So, that now what we need to do is so, first of all there are these the variables ® and o the latent
variables and then there are the different hyper parameters these o and so on, I mean also these

fp, fs these functions they also they may have their own hyper parameters which have to be

estimated. So, what is first done is that this the like all the parameters let us say we represent by
0. So, for the time being let us ignore the latent variables and let us try just try to estimate a

posterior distribution on the hyper parameters based on the observations Vp and VS.

So, the like we do this kind of marginalization where we integrate out the all possible values of
® and a and then we get a posterior distribution of the parameters. Now, this kind of integration
this cannot be done numerically because it is may that might be intractable. So, this kind of

integration is again done through MCMC techniques.

So, that is based on sampling. So, once we get this f 0 that is the posterior distribution of the

parameters, then we choose the map estimate of the all the parameters that is the those the



parameters which maximize the value of this posterior distribution, that in a sense gives us the

optimal values of the parameters.

Then using the optimal values of the parameters again we calculate the map estimates of @ and «
. So, note that ® and « are not individual values, but they are like they are defined separately for
each of the different locations that we are considering. So, that we will get n values of ® and n
values of a and like. So, like we need to do it in many trials and we can expect that like as we or

many iterations and as we do the further and further iterations we can see the like convergence

like.

So, unless the convergence happens we cannot expect to find the like any optimal values and like
here the as their studies shows their experiments show that as they keep on doing more and more
trials by this like using these optimization like they see the some kind of convergence of the root
mean square error; that means. So, like in the like in the held out set which or rather on which
they are validating they find that the using these approach the estimated value of ® and « are

coming close to the unknown values.
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(a) MAF model

(a) Target variables

Kuwatani et al,
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And. So, like. So, this is this might be a possible plot of the @ and which the so, the

observational data are of course, Vp and VS. So, like the this primary wave it has higher velocities



up to 8 kilometers per second, while the secondary wave it is usually slower about 4 kilometers
per second. So, this is let us say over a spatial region. So, as you can see this is graded data at

different locations they the Vp and VS vary.

So, using this and the corresponding target variables are @ and « let us say this is their these are
their spatial distributions. So, this is like this is the training data this is what is I mean this @ and
a is what is already known by some kind of measurement. So, now, what we need to do is to

based on these observations of Vp and VS we need to estimate the @ and «. So, we can either go

for some kind of deterministic method which was known to the seismology researchers earlier

that is where they basically tried to like invert this function fp and f . in some ways.

And so, like this is the kind of estimates of ® and o which they get using those methods and
these are the estimates of ® and a which is obtained by the MRF methods. So, as you can
understand in the like you can compare these plots or these maps with the true the targets the or
the true values and you can see that the estimated values are like very similar to what is the
actual values, but if you compare these maps which are obtained by the old deterministic

methods you can see that there is hardly any similarity.
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» Katzfuss M, H ling D, Smith RL. A Bayesian hi ical model for climate change detection and attribution.
Geophysical Research Letters. 2017 Jun 16;44(11):5720-8.
» Kuwatani T, Nagata K, Okada M, Toriumi M. Markov random field modeling for mapping geofluid distributions

from seismic velocity structures. Earth, Planets and Space. 2014 Dec;66(1):1-9.



So, that shows that using this MRF model we are able to get a much better estimate of the maps

of the unknown variables. So, these are the references of the two papers that we discussed today.
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» PC algorithm used to identify conditional independence relations

» Improvements to PC algorithm work in presence of autocorrelation and
contemporaneous causality

» Teleconnections can be identified using these methods

» Climate model simulations may not preserve causal relations, can be

Verified by these methads

So, the key points to be taken away is like. So, there are the basically that is the key point these
are the key points to be taken away which we discussed that Markov random fields are capable
of like incorporating the spatial autocorrelations and this in turn helps us to identify the relation

the or estimate the various unknown variables.

And secondly, like when we have observations of or multiple observations none of which are
reliable of a particular quantity we can express the particular quantity as a linear combination of
all those observations along with some uncertainty estimates and then the not only the linear
coefficients for the for that relation as well as those coefficients they can all be estimated using

some kind of a like using the inference algorithms like Gibbs sampling and optimization.

So, that ends us that brings us to the end of this lecture, in the further lectures we will see some
more applications of machine learning to for a to discover new insights in earth sciences. So, till

then bye.



