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Hello everyone, welcome to lecture 10 of this course on, Machine Learning for Earth System

Science. So, we are still in the module 1 of Spatio-Temporal Statistics, but this is going to be the

last lecture of this module. So, today we are going to talk about the topic of Data Assimilation.

(Refer Slide Time: 00:43)

Now, what is the concepts we are going to cover today are data assimilation, Kalman filter, and

their applications in earth system science.



(Refer Slide Time: 00:50)

So, now what is data assimilation? Now, we have already in some previous lectures when we are

defining the Gaussian process and things like that. What we were doing is, we were basically

building these kinds of stochastic models for simulation of processes. We had we said at that

time that the those models will be used for like simulating or generating artificial data

corresponding to the different processes.

Now, these dynamical process models are there which are based on like latent variables. So,

these latent variables we can say they represent the system state in some sense that is like we

may have it need not the system state may not be a single variable but it can be like a collection

of different latent variables. And the and typically in case of most models what happens is that

these latent variables they drive the observations that is what also happened in the stochastic

models which we had discussed earlier.

Now, the observations are used to calibrate the model parameters and estimate the latent

variables. So, like we had already discussed in briefly about how Monte Carlo Markov chain

Monte Carlo gives sampling parameter estimation and such things are used to or to estimate the

parameters of these models. But suppose that like there is some ongoing process which we are

trying to predict or like one step ahead using this kind of a model. Now, in this case what

happens is that the observations they come in sequentially that is we do not have a big set of



observations to begin with. So, that we can like calibrate the model by estimating the parameters

accordingly, but the data keeps coming one step at a time.

So, here what we do is we keep like we keep on updating the model as and when the data comes,

and the reason why we want to do the update is that; so, that we can make the better predictions

of the future. It is also possible that like with the various parameters in the model they may also

be time varying, it need not happen that the all the parameters will be fixed. So, like as the more

and more data comes we also have to keep on updating those parameters accordingly.

(Refer Slide Time: 03:25)

So, that is the basic idea of data assimilation that is data keeps coming and we like assimilate that

data into our model to make the our model more realistic and more closely connected to the data.

So this is like a slide from Carrassi who has an excellent tutorial on this Kalman filter on data

assimilations and Kalman filters.

So, like in the like various domains of earth system science like this concept of this data

assimilation is quite heavily used in all these things. So, like the basic thing is that we have

model simulations and we have observations. So, the idea here is to somehow like assimilate the

observations into the geophysical model simulations.



So, it data assimilation best combines the model and observations and brings synergy between

the two. What is the purpose of bringing synergy? The purpose is to make the model more or to

like bring the model as close to the data as possible; so, that it can make predictions or forecasts

more accurately.

(Refer Slide Time: 04:44)

So, as I said in case of data assimilation the system state is represented by a latent variable at

each time point the dynamical model is used to estimate the state variable. Now, the observations

keep arise and the state estimate is also updated the model parameters are reestimated, and then

again the whole process repeats in the next times time point.



(Refer Slide Time: 05:07)

So, that is how it data assimilation usually works and it is solved in a probabilistic framework,

that is, we like we use the probabilistic framework to take into account the various uncertainties.

I mean, even when we are building the model of a particular process we will not be able to like

include all aspects of that process in it. So, those aspects of the I mean there will be various

influencing variables which we are not aware of.

So, what we usually do is those unknown influencing variables we just consider them to be some

kind of random noise which follow some particular probability distribution. So, in this case also

the system state as well as the various observation they are expressed using the probability

density function, the latent state which we just talked about of course, it cannot be measured

directly. So, like it. In fact, it might happen that different values of that latent variable may result

in the same observation.

So, from the observations, we may never be certain about what value the latent state variable has.

So, in such a situation we may want to define some kind of a probability distribution over the

range of possible values of it ok. And in such models, we also usually assume that the system

state follows the Markov process where the present depends where the value at present depends

only on the past value not in the I mean the previous time step not on like say 10-time steps away

or things like that.



So, the uncertainties which we mentioned they are represented as probability density functions

and these PDFs these also keep evolving over time and like the we have to update these PDFs

using the Bayes theorem.

(Refer Slide Time: 07:05)

So, now one of the most popular and successful approaches to this problem of data assimilation

is the so called Kalman Filter. So, in this frame; so, Kalman Filter is a kind of framework. So, let

us say that the state representations they are like denoted by ; so, these𝑋(1),  𝑋(2),.., 𝑋(𝑛),.. 𝑋

these are the latent variables; so, these denote the various time steps.1,  2 ,.., 𝑛,..

Now, corresponding to those system states which are of course, latent we have observations

which we denote by , and we also have inputs . So,𝑍(1),  𝑍(2),.., 𝑍(𝑛),.. 𝑈(1),  𝑈(2),.., 𝑈(𝑛),..

these inputs can be like if you remember we had like when we had discussed the geostatistical

equation and the corresponding spatio temporal stochastic model, we had considered the

covariates.

So, the covariates are non random variables they are exogenous variables which are in a sense

they are input to the network. So, these they can be considered as the exogenous𝑈(1),  𝑈(2),...

covariates of the process. Now, the observe we have like this kind of models they have two



components; one is the observation model which depends on the system state as well as the𝑋

those covariates .𝑈

So, like in a sense this is something which we had discussed in those lectures and then there is a

state updation model also which is which basically says how depends on and𝑋(𝑛 + 1) 𝑋(𝑛)

. That is given the system state and the covariates at this point of time how will the state𝑈(𝑛)

variable be at the next point of time ok; so, that is the state updation model.

So, observation model and state updation model these are the two fundamental parts of this kind

of dynamical process model. Now, then we usually are interested in three kinds of problems

related to this. One is the filtering problem, that is suppose you have observations from time

and you want to estimate that is the current time the current system state based on the1,.., 𝑛 𝑋(𝑛)

current and all the past observations that is we call what we call as the filtering problem.

Next comes the smoothing problem; what is that? Let us say we have observed the full time

series from we have all the observations. So, based on that at any intermediate𝑇 = 1,.... 𝑇 = 𝑇 

time step we are interested in knowing the system step that is the smoothing problem. And

finally, the prediction problem that is you have observation till time and based on that(𝑛 − 1)

you are trying to predict or forecast what the system state is next going to be at . So, these𝑇 = 𝑛

are the three main problems which we usually try to solve.
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Now, let us denote by this denotes the system step at time as predicted𝑋(𝑛 + 1, 𝑛) 𝑋  (𝑛 + 1)

as time . So, like basically means the actual system state at , but the system step we𝑛 𝑋(𝑛) 𝑇 = 𝑛

are system state we are not able to measure directly. So, we like always have to have some kind

of estimate of it and those estimates which we make they also vary over time.

So, if I am making the estimate of the present at present, I like I will it will take some value or if

I am estimating the future from the present or the past from the present, they will have different

values. So, by or in general , i mean the estimate of the system step at time𝑋(𝑛 + 1, 𝑛) 𝑋(𝑖,  𝑗) 𝑖

as estimated from time ok. 𝑗

Similarly, will mean the system state at time as estimated at that same time and of𝑋(𝑛, 𝑛) 𝑛 𝑛

course, is the input variable and is what we call as the noise. So, like we already said𝑈(𝑛) 𝑤

why these processes should have some like we should consider some noise in the process. So,

this is what the dynamical model of the Kalman filter looks like, that is, that is the𝑋(𝑛 + 1, 𝑛)

my estimate of the time of the system state at the next step of time is going to be or can be

represented like this. . So, here𝑋(𝑛 + 1,  𝑛) =  𝐹 * 𝑋(𝑛,  𝑛) +  𝐺 * 𝑈(𝑛) +  𝑤(𝑛) 𝑋(𝑛,  𝑛) 

is of course, the current estimate of the current state and is the like transformation matrix or𝐹

you can call it as the state transition matrix. ; is the covariates at this point of𝐺 * 𝑈(𝑛) 𝑈(𝑛)



time and they can be mapped to the system state in future by this matrix called and then we𝐺

have the noise .𝑤(𝑛)

So, note that this and matrices like they you can you may be able to relate them to the and𝐹 𝐺 𝐴

matrices which we had discussed like in lecture 3 or lecture 4 when we are dealing with the𝐵

geo statistical equation. Now, is the state transition matrix and is called the input matrix; so,𝐹 𝐺

of course, we need to estimate these matrices and from the data.𝐹 𝐺 

(Refer Slide Time: 12:57)

Now, apart from that apart from this dynamical model there are many other equations in this

related to the Kalman Filter; say, most importantly the measurement of the observation model.

So, let us say is the true state of the system at ; so, note that here we are talking𝑋(𝑛) 𝑇 = 𝑛

about as opposed to or .𝑋(𝑛) 𝑋(𝑛,  𝑛) 𝑋(𝑛 + 1,  𝑛)

So, these like whenever we have two indices two time, indices of like this what we are talk𝑋

talking about is estimates of . In this case we are talking about the true value of which is of𝑋 𝑋

course, unknown, but if it were known like we like then it would follow this kind of a relation.

Where is the observation which is of course, known and then is the like measurement𝑍(𝑛) 𝑉(𝑛)

error and then is the observation matrix.𝐻



𝑍(𝑛) =  𝐻 * 𝑋(𝑛) +  𝑉(𝑛)

So, now it can be shown that this this expression for that is like here we are𝑋 𝑋(𝑛 + 1,  𝑛)

basically talking about the this problem the prediction problem. That is I have observation till a

particular time point I am trying to predict the estimate the next the time step at the next I mean

the system state at the next time step.

So, this can be represented in the dynamical model using this equation.𝑋(𝑛 + 1,  𝑛)

𝑋(𝑛 + 1,  𝑛) =  𝑋(𝑛,   𝑛) + 𝐾(𝑛) * (𝑍(𝑛) − 𝐻 * 𝑋(𝑛,  𝑛))

But it can also be like rewritten in the following way using this quantity called which is𝐾(𝑛)

known as the Kalman gain and this is also called the filtering equation. So, here you can see the

estimate of the next state or as observed from the current state is the current state plus the

Kalman gain times this thing.

What is this thing? This thing is nothing but the like you like you can say the difference between

what is observed and what is predicted by the model. Note that is what the is my𝑋(𝑛,   𝑛) 

estimate of the current state; so, if that was like if that was indeed the correct the if that were

indeed the correct state of the system. Then the corresponding observation would have been 𝐻

times that value plus the noise, but the noise we may consider to be zero mean.

So, the expected value of the observation at this current observation should be just 𝐻 * 𝑋(𝑛,  𝑛)

but the actual observation is ; so, these two may not be exactly equal to each other. So, the𝑍(𝑛)

Kalman gain basically like transforms the this error of my of observe of the current observation

and it transforms the or that is based on the current error of observation which I make it tries to

estimate the next step.

So, this that is this is this this is a very crucial quantity of this Kalman filter this is known𝐾(𝑛)

as the Kalman gain. Now, apart from predicting the system step at the next time step, we also try

to quantify the uncertainty of this estimate. That is for this we like this the which we are𝑋 𝑋

talking about here in a sense it is like the expected value or the mean value.



But it there are like I mean like instead of making a point forecast we should also keep in mind

that it could like there can be an error of the forecasting also, that is instead of predicting exactly

this value it can predict a nearby value also. So, that covariance is called ; so, this𝑃(𝑛 + 1,  𝑛) 

is the uncertainty of prediction of . And is the that is the uncertainty of the𝑋(𝑛 + 1,  𝑛) 𝑃(𝑛,  𝑛) 

current estimate ok, that is it is the variance of .𝑋(𝑛,  𝑛) 
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Now, like we it is possible to like calculate these variances in terms of each other. So, like as you

can see here like this actually follows or this equation can be derived from the from these

equations here with making some appropriate assumptions; so, this is known as the covariance

extrapolation.

So, here basically we are estimating the uncertainty of the next state prediction in terms of the

current state prediction right. And this this is like this matrix is like what we considered like𝐹

earlier this matrix right the state transition matrix and is like is the like is the it is the noise𝐹 𝑄

covariance. Now, this P of n comma; so, here we are estimating in terms of𝑃(𝑛 + 1,  𝑛)

.𝑃(𝑛 + 1,  𝑛)

But, this itself can be expressed in terms of , like and that estimate𝑃(𝑛 + 1,  𝑛) 𝑃(𝑛,   𝑛 − 1)

again involves this quantity of Kalman gain. So, all these quantities the Kalman gain the



and the all these are these can be written recursively one in terms of the other.𝑃(𝑛 + 1,  𝑛) 𝑃(𝑛)

That is we first get an like expression of ; using or let us say using , I and K and𝐾(𝑛) 𝐾(𝑛) 𝐾(𝑛)

I can get . Now, once I have , then I can have using𝑃(𝑛,   𝑛 − 1) 𝑃(𝑛,   𝑛) 𝑃(𝑛,   𝑛) 𝑃(𝑛 + 1,   𝑛)

which I can again derive and so on and so forth.𝐾(𝑛 + 1)

(Refer Slide Time: 19:10)

So, the whole thing goes around in a cycle and that is illustrated in this diagram which I have

taken from this excellent tutorial called Kalmanfilter.net. So, here it is like saying that we have

an initial estimate of the system state and the corresponding covariance; so, this is the initial

condition. Now, based on this first we extrapolate the state the what the next state is going to be

and its corresponding uncertainty right.

So, they are given as and . Now, so this is you can say this is my 𝑋(𝑛 + 1,  𝑛) 𝑃(𝑛 + 1,  𝑛)

prediction of what the system step is going to be in the next step. Now, at the next step I get the

data, I get my observation; so, what I do now first of all I calculate the Kalman gain. So, the

Kalman gain I can calculate using the equation which we have already talked about, next we can

update our estimation of the system state using this kind of an equation.

So, note the is like it is the estimate of the current state which I had earlier I mean.𝑋(𝑛,  𝑛 − 1)

So, when I; so, when I made this kind of prediction; so, this prediction in a sense it becomes



something like this is the this is the same thing. But here now we are talking about at time

I am trying to update this thing this prediction by using the Kalman gain.𝑇 = 𝑛 + 1

Now, that I have obtained ; so, I can now calculate this and the Kalman gain for the Kalman𝑍(𝑛)

gain I already have this equation in terms of , but is again something𝑃(𝑛,  𝑛 − 1) 𝑃(𝑛,  𝑛 − 1)

which I had already obtained I mean I had already calculated.

Now, when I get this updated estimate then I can of the current state then I can also estimate the

uncertainty or the covariance of the current state, that is that can be calculated in terms of𝑃(𝑛,  𝑛)

the quantities that are already known. And then once I have ; now, I go back to the this𝑃(𝑛,  𝑛)

state. Now, I will calculate in terms of and I will also calculate𝑃(𝑛 + 1,  𝑛) 𝑃(𝑛,  𝑛)

using .𝑋(𝑛 + 1,  𝑛) 𝑋(𝑛,  𝑛)

Because, I have got I already know this quantity and I will again pass it on. So, these two steps

will they will keep on like going around in loop; it is like I will in this step I am predicting, in

this step I am correcting that is once I get the data, I correct my predictions I, reestimate the

system step and then again I predict what the next system step will be. Again I get new data I

like make corrections of my estimate and then again predict the next step and this just goes on;

so, this is how the Kalman filtering works.

(Refer Slide Time: 22:05)



So, like, as you like the equations we were discussing so far all those equations we had some

kind of a noise variable this kind of a random variable right, these or like this the𝑄'𝑠 𝑉'𝑠 𝑊'𝑠

these were all the random variables. But we had written these as equations involving a random

variable, but instead of writing them an equation we can directly go into some kind of a

probability distribution that is we can; so, the prediction model is become something like this.

Given the current state what is the probability distribution over the next state or given the current

system state what is the probability distribution over the observation. Now, given a sequence of

like system states what is going to be the sequence of the observations and things like that. So,

we can actually define these kinds of probability distributions and in the case of Kalman filters

we usually use the Gaussian distributions for all these things, that is each of these distributions is

considered to be a Gaussian distribution.

(Refer Slide Time: 23:23)

If we do so, if we use the Gaussian distribution then we are actually able to calculate the in the

closed form expressions for these functions like and so on which we are talking about. Now,𝐹

different extensions of the Kalman filters are possible; so, one is; so, first of all we can have the

extended Kalman filters.



So, in the Kalman filter which we are talking about this is actually a linear Kalman filter in the

sense that the equations we are considering the observation model or the state transition model

etcetera. They are all as you can see they are all linear models, but we can make them non-linear

by including some kind of non-linear transition functions or observation function etcetera.𝐹 𝐺

Then there is a possibility of using the ensemble Kalman filters where instead of having a single

estimate of the state vector, we can have a set of possible values of them. And this set at every

stage is like is updated using the Monte Carlo methods and this is usually done to it is usually

considered to follow the Gaussian distributions.

We can also have the continuous time Kalman filters in which we like instead of defining of

and things like that we actually define the time derivatives of in terms of say𝑋(𝑛 + 1,  𝑛) 𝑋(𝑛)

let say the current values of and things like that.𝑋(𝑛) 𝑈(𝑛)

(Refer Slide Time: 24:53)

So, this Kalman filter is a concept which has often been used in the like in the domain of earth

system sciences in various kinds of problems. So, for example, this one is talking about the in

situ monitoring of groundwater contamination. So, we like let we are focusing on the

contamination of groundwater, but we have observations at sparse point sparse time intervals.



And like we have what is known as the in situ observations that is only at certain points certain

particular locations we have say something like well where we have the it is possible to measure

the purity of ground water using sensors and things like that. But, in other locations and we do

not have these kinds of measurements.

So, what we do is we use a Kalman filter; so, at like at any given location we try to estimate. So,

like in this case actually rather than time we are doing the like we are actually moving over space

and at any given location let us say I have some kind of model for the ground water

contamination. So, let us say in this case the system state may represent the purity of the ground

water.

And like at and we see that is the model basically tries to predict how in other locations the I

mean the and also at as a time series that is also possible. At other locations and at other points of

time how the purity of ground water will change.

Now, at we have when we have in situ measurements that is at a single location at a and at a

single point of time then I will once I have that observations that then I can modify my system

state accordingly. And then again go on predicting at other locations and other time points then

again, I will have some again some in situ observations again I will update and. So, on the whole

process will go on ok.
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And similarly, I can also do the review like of the ensemble Kalman filters of the atmospheric for

atmospheric data simulation and so on.

(Refer Slide Time: 27:17)

So, like regarding references I will actually direct you to this excellent tutorial called Kalman

filter dot net. So, like here all the various equations related to the Kalman filters and their actual



values assuming the Gaussian distribution and so on they are derived in great details. I actually

encourage you to go through all those equations and try to understand the all the derivations

etcetera.

And then there are also several papers where these concepts have been like used in various

domains of earth sciences; for example, there are GCMS these are the global climate models.

Now, in case of the these global climate models, this data assimilation is a very important thing

because like these models once they start once we run them with some initial conditions.

They may go along a entirely different trajectory which have nothing to do with the like what has

actually been observed. So, it is necessary to ground those simulations to reality and that is

achieved with the help of data assimilations.

But this GC when did these GCMS are assimilated with data, then they actually give us like what

is known as reanalysis data. So, when we have these data sets of let us sea surface temperature

from all over the world and things like that, that is like such data is actually what is known as

reanalysis data that is it is not pure observations. We cannot actually measure the sea surface

temperature at all parts of the world because we do not have so much of sensing power.

But we can like you can say marry the observations with some kind of model that is the purpose

of data assimilation and then we can get the estimated data like from all over the world. And then

there like in various other hydrological and other processes these concepts of data assimilation is

often used and this Kalman filter or the various extension of the Kalman filter that we discussed

they are all very useful.
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So, the key points here is that the dynamical models are used to make forecast starting from

some initial conditions. The data assimilation is used to keep updating the dynamical model with

the observations as and when they arrive and to keep; so, the these updates include the state

variables as well as the various parameters.

Now, a well-known approach to data assimilation is Kalman filter its standard form of Kalman

filter is using linear functions for the measurement as well as for state transitions using the

Gaussian noise. And this can, but it can also be extended to non-linear and ensemble estimates.

So, with this we come to the end of not only this lecture, but also this module 1 on

spatio-temporal statistics. So, the next module will be the machine learning methods for earth

system science; so, which will start from the next lecture; so, till then good bye.


