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Implications of Minmax Theorem

Welcome. So, we started proving Minmax Theorem. We last time we wrote the linear

programs for row player and column player. And we also observed that they are duals of

each other and we will see the proof of minmax theorem, using strong duality theorem.
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So, let us again recall what is what was minmax theorem. So, it says that, let A be a

matrix real matrixm×n and then, it says that, there exist mixed strategies  x∗ which is

equal to x1
∗ , ..., xm

∗ and y∗ which is equal to y1
∗, ... , ym

∗, such that, max x∈Δ([m ]) xAy
∗ is same

as min y∈Δ([n])x
∗ Ay.

And the proof let us do its proof, we wrote the linear programs for row and column

players they were LP1 and LP2 and we first observed that LP1 and LP2 are duals of each

other  and  we  want  to  apply  the  strong  duality  theorem,  for  that  we  need  to  the

assumption is that, at least one linear program say LP1 must be feasible and bounded.

So, is LP1 feasible? So, LP1 is clearly feasible, because for feasibility x just needs to be

a  probability  distribution  take  any  probability  distribution  x  and  that  satisfies  the



feasibility conditions of LP1. Is it bounded? Yes. So, this value max x∈Δ([m ]) xAy
∗, this is

less  than  equal  to  max i, j A ij and  greater  than  equal  to  mini , j A ij.  So,  its  bounded  by

maximum and minimum value of the matrix. So, it is so, it satisfies the assumptions of

strong duality theorem.
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And what we have hence is OPT of LP1 equal to OPT of LP2. Now what is OPT of

LP1? Let us write it this is by strong duality. So, what is OPT of LP1? OPT of LP1 is

min j∈[n ]∑i=1

m
A ij x i

∗. Suppose, say x equal to x∗ is giving is giving the optimal value. So,

or maximize maximizes the sum this is i=1 ,... ,m. And suppose,y= y∗ optimizes LP2. 

So, OPT LP2 is equal to  max i∈[m ]∑ j=1

n
Aij y j

∗ ok, and this you can also write as this is

equal to in matrix multiplication notation max i∈[m], e i e i is the row vector with ith

coordinate  1  and  everything  else  0  e i A y
∗,  and  the  upper  one  you  can  write  it  as

max j∈[n] x
∗A e j.

Now,  because  x∗ minimizes  this  quantity.  So,  we  can  write  it  as  this  same  as

minx∈Δ([m])max j∈[n ] x Ae j. Similarly, because y∗ minimizes that quantity this is. So, let us

see. So, what does the minmax theorem needs to prove? So, minmax theorem, you need

to show that max x∈Δ([m ]) x A y
∗.



Now, this is same as max yes,  max i∈[m ]e i A y
∗, which is same as OPT of LP2 and by

strong duality OPT of LP2 equal to OPT of LP1. So, this is  max j∈[n] x
∗A e j which is

nothing but,  this  is  min y∈Δ([n])x
∗ A y.  So,  it  says that  you fix  y∗ and try and see by

varying x star by varying x, what is the maximum value of x A y∗? Is same as you fix x

star and by varying y you take the minimum value and these two coincides.
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So, now we will have beautiful corollaries from here. The first corollary is that, in every

matrix game matrix game, there exists an MSNE. This follows immediately from Nash

theorem, but we have not proved Nash theorem, and independent of the without using

Nash theorem, this follows from minmax theorem. We will see and not only that, the

mixed strategies of both the players guarantee their security level ok.

So, what is it? So, let us prove it. So, letx∗=(x1
∗ , ..., xm

∗), be a solution to LP1. Solution

means, it provides optimal value for LP1 that is one x∗ and y∗ is an optimizer for LP2

ok. And by minmax theorem, we have seen that, this is, by minmax theorem, if I look at

x A y∗ and try to max let column player play y∗ and let x∗ let the row player maximize

over x∈Δ([m]) and let row player play x∗ and let column player minimize x∗ A y, these

two values are same. Now, you see that we first claim that (x∗ , y∗) is a mixed strategy

Nash equilibrium.
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Let us see, first claim (x∗, y∗) is an MSNE ok. Let us see why, what is x∗ A y∗ ? If you

look at this x∗ maximizes this because x∗ is a solution to LP1 in particular x∗ maximizes

this quantity. So,  x∗ is,  x∗ A y∗. So, from row players perspective, because x star is a

solution to LP1, x∗ A y∗ is less than equal to max x∈Δ([m ]) x A y
∗ ok.

But,  this  is  nothing  but  by  applying  minimax  principle,  minmax  theorem,  this  is

min y∈Δ([n])x
∗ A y. So, this shows, hence the column player does not have any incentive to

deviate  from  y∗ given the row player  plays  x∗.  Why it  is  so?  Because,  the column

players utility matrix is -A and when  x∗ A y is minimized, then the utility of column

player is maximized.

Similarly, you can also look at x∗ A y∗, y∗ is again a solution to LP2, this is greater than

equal to  min y∈Δ([n])x
∗ A y and which is equal to by minmax theorem, max x∈Δ([m ]) x A y

∗.

So, similarly, the row player also does not have any incentive to deviate given column

player given the column player plays y∗.



(Refer Slide Time: 19:22)

Hence, (x∗, y∗) is an MSNE ok. And why does, and also you observe that, you know x∗

and  y∗ are  solutions  to  linear  programs;  x∗ and  y∗ are  solutions  of  LP1  and  LP2

respectively. And because, linear program can be solved in polynomial time, they can be

solved  efficiently  an  MSNE  of  a  two  player  zero-sum  game  can  be  computed  in

polynomial time ok.

And of course, we there every player is guaranteed their security value and from where

we get this? We get this from this equality. So, what is the utility of column row player?

It is  x∗ A y∗, and we have seen that this is greater than equal to  max x∈Δ([m ]) x A y
∗ and

what is y∗? So, replace the definition of y∗ x in y∗ is a solution for linear program two. 

So, that means, this is min j∈[n ] x Ae j this is nothing but, the value of row player; among

all mixed strategies of row player, you pick the one you iterate over all mixed strategies

of row player and see what is the minimum utility that is guaranteed, in this particular

mixed strategy of row player.

Similarly, for column player, you see that x∗ A y∗ is less than equal to sorry, what do we

have? This should be greater than? Yes, this should be greater than, then only it make

sense. This is greater than and now similarly for column player x∗ A y∗, no, this is just a

minute, this is less than, yes. So, x∗ A y∗ the utility of row player is at most.
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So, from here we conclude that, utility of row player is at most its value. But we have

already we already know that  the  utility  of  row player  in  any mixed strategy Nash

equilibrium must be at least its value.
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So, in particular, we can conclude that, the utility of the row player in (x∗, y∗) is exactly

its value is its value. Similarly, for column player. So, for column player we should use

the other inequality  x∗ A y∗,  this is greater than equal to  min y∈Δ([n])x
∗ A y which now

what is x∗? x∗ is the minimum y∈Δ([n]).



Now, x∗ was an optimal solution of LP1. So, this is max i∈[m ]e i A y. So, this is nothing but

the value of the column player and this is minus. So, because the utility matrix of column

player is -A, the utility of the column player in (x∗, y∗) is at most its value and because

utility of any player in an MSNE should be at least its value, this is exactly its value. 

This, what we have claimed before, that in general game in non-zero sum game, it may

be the case that the utility of a player in a mixed strategy Nash equilibrium, is strictly

more than its value. But in two player zero sum game, you take any mixed strategy Nash

equilibrium the value the utility of that of both the players in this mixed strategy Nash

equilibrium is exactly their value, ok.


