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Algorithmic Mechanism Design

So,  till  the  last  we  have  seen  implementable  social  choice  rules  and  implemented

implementable  allocation  rules  in  various  single  in  various  (Refer  Time:  00:37)

environment. In today’s lecture we will see a glimpse of Algorithmic Mechanism Design

this is not even a tip of iceberg.

This is just a glimpse just to give you a flavor and this algorithm algorithmic mechanism

design  is  currently  a  very  advanced  field  of  active  research  in  theoretical  computer

science and game theory.

(Refer Slide Time: 01:03)

So, today’s topic is a glimpse of algorithmic mechanism design and for that we will take

an allocation rule which is called Knapsack allocation in a Knapsack problem we will

study the Knapsack allocation rule. So, we all know the classical Knapsack problem. So,

let us recall the Knapsack problem what was the problem? What are the inputs? 

Input n items with weights  w1 ,…,wn and valuations  v1 ,…,vn and Knapsack of size w

and the goal is to find a subset S of items {1,…,n} such that the ∑i∈S
wi≤W . The size



of the Knapsack and the valuation is maximized and subject to this weight constraint the

sum of weights is at most W subject to this constraint the valuation of S the what is v of

S? 

It is  ∑i∈S
v (i) is maximized ok. This is the classical Knapsack problem and we know

that this is weekly NP complete.

(Refer Slide Time: 05:01)

So, this problem is weekly NP complete what does weekly NP completeness means?

That this problem is NP complete, but if the input if the in input integers are encoded in

unary, then it is polynomial and solvable. Say in the same thing in other words there

exists pseudo polynomial time algorithms for it. Now what is the game theoretic masala

in this problem? We assume each item corresponds to a player and the valuation of the

items say i evaluation vi of item i this is the type of player.

Valuation is the type which is that means, the private information known only to player i

is the type that is private information the valuation is the type of the player. Now to solve

this problem we first need to design a mechanism to a to design a game or mechanism

so, that it is the best interest of the players to reveal the true type that is what we mean by

implementability. 

So, why players would reveal their  true type? First  observe that the type the private

information is a single real number is the crucial  observation is each players type is



single real number ok what are the set of all allocations? The set of all allocations let us

write it set of all allocations k is you know this this vectors (x1 ,... , xn)∈{0 ,1}n such that

this is the; this is the sort of the allocation vector if x i=0; that means, the i-th item is not

picked if x i=1; that means, the i-th item has been picked. 

So, the constraint is ∑i=1

n
x iwi≤W . So, these are the set of all possible all valid subset of

item that can be picked and what is the condition for validity? It is that the sum of the

weights must be at most W.

(Refer Slide Time: 09:55)

And for a particular player i∈[n] what is K i? K i is all those vectors allocation vectors in

k whose i-th component is 1. And you see that players as far as player i is concerned for

player i, it on only depends on the whether the whether the allocation chosen belongs to

K i or not from player is perspective its utility depends only on whether its item has been

picked or not. So, this is exactly what is the what is our basic model of single parameter

domain.

Each type is a real number the set of all types you can think of a set of all real numbers

may be.  So,  it  is  an interval  and there is  a  set  of  allocations  and among the  set  of

allocation there is a subset of allocations K i where player i wins and in the other player i

loses this. So, this is. So, this is single parameter domain ok.



This is a basic single parameter domain and you know we know that in this thing guess if

we if the if the allocation rule is monotone then it is implementable. So, is the allocation

rule monotone is the Knapsack allocation rule monotone in each component. Of course,

it is clearly it is. How? What does monotonicity says, if the type profile of all the all

other players. 

So, let us focus on a player i and if a type profile of other players remain same in this

particular context it means that; that means, that the valuation of all other items except i

remains same and for a particular type of player i θ i or in this particular example with a

particular valuation for item i if player i wins; that means, if that item is picked then if

player i increases its type if its valuation increases, then we will continue to picking up

this object in the in our solution. So, this is clearly monotone.

So, what is the big deal because then then we can apply they then we can apply the

critical value and that will be the payment and everything is fine. The problem is the

problem  is  computing  Knapsack  allocation  is  NP  complete  its  computationally

intractable. And you know this Knapsack problem is not just a problem which is only of

theoretical  interest,  this  is  very  practically  motivating  problem  it  appears  in  many

practical examples.

(Refer Slide Time: 14:40)

For example so, let us write. So, real life real world example of Knapsack problem. So,

think of a say a popular TV show and there is a certain amount of time allocated for



showing ads. So,  W minutes are allocated for showing ads and there are n potential

advertisements n potential advertisements competing for slot. 

There are n advertised and advertisements and each want their Ad to be shown each ad

has a certain interval it needs certain amount of time to be shown. So, w i is the duration

of Ad i and each particular ad has a certain valuation its call it a goodness or appeal or

utility of that ad to a society, but that is known only to player i. 

So, v i is the valuation or utility of Ad i known only to player i and so, the idea the

question is how will I how will I choose these ads and what algorithm I should use so,

that  not  which  not  only picks  the best  ad,  but  ensures  that  players  reveal  their  true

valuations and that is very easy because if you pick any monitor allocation rule and the

Knapsack allocation rule is monotone, but the problem is it is NP complete. 

So, the whole play or the challenge of algorithmic mechanism design is to come up with

approximate good approximation of the desired allocation rule which are still monotone.

And which approximates the optimal solution closely and why and so, and why we need

monotronicity? To ensure that players reveal their true type in the best of their interest.

(Refer Slide Time: 18:40)

So, here is  a two step paradigm design rule  of  two step design rule  for algorithmic

mechanism design. The first tip is assume DSIC for free. Assume that players reveal

their true type in the best of their interest that is why what DSIC means and then second



step is design and allocation rule which of course, can be computed in polynomial time,

approximates our optimal objective value and monotone.

This is the extra requirement that we have in this algorithmic mechanism design and only

because of this monotonicity we can assume that the DSIC is free this  monotonicity

justifies our assumption in step 1 how we could assume DSIC for free. So, in the context

of in the context of Knapsack problem let us see how we can design an allocation rule

which satisfies all these three properties.

And the allocation rule for Knapsack problem is very simple, it is called there is a very

simple greedy allocation rule. So, greedy allocation rule for Knapsack what does it say?

First  discard  all  items  whose  weight  is  more  than  w because  those  items  are  never

participate in any outcome in any solution delete all items having weight more than W.

So, we can assume that without loss of generality that the weight of all  the items is

weight or size is at most W.

(Refer Slide Time: 23:17)

Then you sort the items by valuation by weight and by renaming. So, let  us assume

without loss of generality by renaming that 
v1
w1

 whichever item has the highest valuation

by weight. Let us call that item 1. So, 
v1
w1

≥
v2
w2

≥
v3
w3

≥...≥
vn
wn

 and the algorithm is pretty



simple keep picking items according to this order 1, 2, 3 till there is space in the there is

space in the back in the Knapsack.

So, pick items till  there is  space let  the items picked let  the set  of items picked be

S={1 ,2,…. , i∗} that is the sum of weights of the first i∗ items ∑ j=1

i∗

w j≤W , but if I go

till i∗+1 the weight exceeds ∑ j=1

i∗+1
w j>W  ok.

And then what should i  output? So, output S if the total valuation of the items in S

∑ j=1

i∗

v j this valuation exceeds or greater than equal to the valuation of (i∗+1)th item. On

the other hand if  the valuation of all  the items in sum of valuations is less than the

valuation of (i∗+1)th item because each item fits in the Knapsack the weight of (i∗+1)th

item is also less than equal to W.

So, otherwise if; that means, if this if the valuations of items in S is strictly less than

valuation of  (i∗+1) then otherwise output otherwise output  (i∗+1). So, this is clearly

polynomial time algorithm because it just involves some divisions and sorting which can

be done in order O(n log n) time.

(Refer Slide Time: 28:44)

So, this  allocation rule  this  allocation rule  can be computed in polynomial time this

allocation rule can be computed in polynomial time and it is clear that it is monotone. So,

to check that if you see that if the output is S; that means, the set contains the first  i∗



items and if the valuation of some item increases, then the same set will continue to out

to be output.

On the other hand, if vi∗+1 is output and if that item the its valuation increases while the

valuation of all other items remaining same then that item continues to be picked. So, it

is  again  the  allocation  rule  is  clearly  monotone clearly  monotone.  How good is  the

approximation factor?

So, let us see. So, here is the theorem let us call it k greedy has an approximation factor

of as an approximation factor of half; that means, its valuation the quality of the solution

should be at least half the optimal solution proof ok. So, what is k greedy? Let us let us

call k grid the alk the output of the value of the output of the algorithm l this is greater

than equal to max {∑ j=1

i∗

v j , v i∗+1}.

So, this is greater than equal to max of 2 numbers is greater than the average these the is

the averaging principle 
∑ j=1

i∗+1
v j

2
. And this numerator is an upper bound for OPT

.  So,  this  is  greater  than  equal  to  
OPT
2

 which  shows  that  this  is  a  half  factor

approximation algorithm which concludes the theorem. So, we will stop.


