Algorithmic Game Theory
Prof. Palash Dey
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 36
PoA of Selfish Load Balancing Game

Welcome. So, from the last two lectures we have been studying price of anarchy and
today we will continue that. In the last lecture we have studied price of anarchy of selfish
network routing games and we have proved a very powerful result that the price of
anarchy depends only on the amount of non-linearity on the non-linearity of the cost

function. It does not depend so much on the network structure.

(Refer Slide Time: 00:53)

Lechoe §.)

- j"‘“ G be Scheduded
‘Plkrds" [u) e sek "’{ Jm' i maching,,
- Sl st of ek g)
sl o ek

- Ghdugy pel et
p: D) — [

T P b omigned W
— (st {'wi'w'- swppese) /

So, today we will take another example of a game, a very popular game which is called
Selfish Load Balancing Game and we will again study price of anarchy of this game;
selfish load balancing game. So, what is the game? Who are the players? So, first
players: players are they are n players and each player is a job, think of we have n jobs

and we are trying to schedule them across m machines.

So, n jobs to be scheduled on m machines, this is the underlying scenario. So, the jobs
are the players, n jobs this is the set of jobs and each player has an option of which
machine it wants to get executed. So, strategy set of each player is m, the set of machines

ok. And what is strategy profile? A strategy profile says which jobs get gets assigned to

which machine. So, a strategy profile is an assignment A of jobs to machines, it simply
says which jobs has been assigned to which machine ok. And there is cost function,

suppose ith job is assigned to jth machine.

(Refer Slide Time: 04:54)

'),\r medens . Eech ")e* 0! Ao ¢ l%z'r W oad eed]
o Bl -
el 9 Ron & ‘r“ﬂ g })_E Faken
R - T S
’W\‘\J“n‘-) /) 7

fwn .)’k t '_
mind K Lh)-"[""]

gowda

.
W

— : T F’F?“”.""k
\Z__ Weoo T @

e A /i

Each job has a length, then the cost of ith job sorry, each job i in n has a length [; length

say let us call it w; and each machine j has a speed of s;. So, time taken to run job i in

W.
machine j is S—l ok. And the load of a machine j in an assignment, the load [; of machine |
J

in an assignment A is the total amount of time for which the machine runs. So, some of

the time taken for the jobs which are assigned to that machine to get them executed.

So, i€[n] such that this job i has been assigned to machine j. And how much time it will

. . .o W .
take, for measure for the job 1 to get executed machine j? —. So, this is the load, the
S.
J

some of the times of these jobs to get executed in this machine j is its load. And now we
go to the, now we come to the cost function. The cost of job i in a strategy profile, which
is an assignment let us call it A, in a strategy profile A:[n]=[m], the cost of jobiin a

strategy profile A is the load of the machine j is I;, where A(i)=j. That job i has been

assigned to machine j ok.

So, in the you know in the last example of the selfish network routing game, because it

was a potential game it was clear that it that game has a pure strategy Nash equilibrium,

which is not so clear in this shellfish load balancing game. So, that is the first we need to
show that it has a pure strategy Nash equilibrium, otherwise the price of anarchy concept
itself is not defined. We have defined price of anarchy with respect to pure strategy Nash

equilibrium.

(Refer Slide Time: 10:10)

SQM5L LD \-Jdamf}»%/ aMc Lo 2 PSNE.

Theaor EVM

?:'j; Asibu'dl wv‘j aMTafnm\a.J— Ri(w)— ["‘J W H,
“LQ wd?’ (’r\.,--., “m) PR TP Y

2% urted
Q‘h) ,'Jr Hare xistg

Ne S (1‘,.__’%,_)7(9__’,...,

i) pod

i QK:O\L v xelj-),

!

So, an important theorem is every selfish load balancing game has a pure strategy Nash
equilibrium proof. You see that this is very important for price of anarchy to make any
sense, because in the price of anarchy we need the cost of a strategy profile which is a

equilibrium, which is a pure strategy Nash equilibrium, ok.

So, how the proof goes? We associate every assignment A; we need to show that there
exists a strategy profile which is pure strategy Nash equilibrium where there is no benefit
for any player to deviate unilaterally and strategy profiles are nothing, but assignments.
So, we start with strategy profile with assignment and we associate them with its sorted

load vector.

What is it? What let us call it say [,,...,1,; not [, 1 we have used. A,,...,A,, . So, why

sorted? You see you for the assignment you see what is the load of each machine and

you sort this ok. So; that means, say A,>A,. So, A4, is not the load of machine 1, it is the

highest load.

So, A, may be the load of say 10th machine, A, is the second highest load, it may be the
load of 20th machine and so on. And you break ties arbitrarily; think of them as just
numbers ok. Now, we will compare load vectors, we will define a rule to compare load

vectors. So, define we say I have 2 load vectors A4,...,4,, this is say we say greater than

another load vector)L'l, vy)L;n, this called lexicographic order.

You start from left and see where in which index they differ first. For example, suppose
A,=A,, fine you go to A, check whether is it A,= A,. If suppose it is again yes, then you
go to the third index, take the first index from left where they differ, suppose it at the
10th index the differ. A,,#A,,. From A,,..., Ay is same as A,, ..., A,. At tenth index in it

differ and then at that index you see which one is more.

So, if A,y>A,,, then use we say that this tuple (4,,...,4,)>(4,,...,A,). So, we say we

m

are defining this thing, this con if we say (A,...,A,)>(4,...,A), if there exists an

index j€[m], such that A, =4, forall k€[1,j—1] and A,>A ok.

So, for each strategy profile, we have assignments and for each assignments they have
we have these load vectors sorted load vectors, among all those sorted load vectors
which corresponds to assignments, we see we find out which one is the smallest one,

according to this order.

(Refer Slide Time: 15:50)

Lo} (f\ Q_) Le the omllet wted Lad) veda s lef-
AIWERS]

P, TR S " M) . Wa daim
the e S I

PINE . Suﬁm ml | Thn, thee adsh

A v &
. '75{, peb) ke bendh ")

oy -frm» maching,

N padi €
(’(\\I g .

ww Sk

7({)‘\1“" £ Lad) veder

So, let lambda 1 to lambda m be the smallest sorted load vector, you see which one is
smallest. We claim that the strategy profile for whose corresponding assignments load
sorted load vector is ()Ll,...,)Lm) must be a PSNE. So, we claim and let A, the

assignment let the assignment A gave rise to, A corresponds to this sorted load vector
(Aysees).

We claim that A is a PSNE; A is a Pure Strategy Nash Equilibrium. We will show that
there is no unilateral beneficial deviation. So, suppose not then there exist a job say
i€[n] which benefits by moving from machine s to machine t; suppose there exists a job.
So, you ask what are the indices in this sorted load vector, A, to suppose this is A, is the
load of this machine s, and because it moved to machine t, t must be less loaded than s.

So, t must appear to the right of A, suppose this A,.

And now so, what is you ask what is the load vector of after job i is moves from machine
s to machine t. First we observe that the load of machine t after 1 is 1 moves from s to t, it
cannot be more than or greater than equal to 4,, it should be strictly less than A,. First
observe that the load of every machine except s and t remains same and also the
machine, the load of machine t after 1 moves there, its load must be strictly less than

lambda a, then only it is a beneficial move for machine for job i.

So, the new node vector has the first (a—1) entry is same and the a th entry. What could
be a th entry? a th entry could be this entry, lambda a minus the time taken for time taken
for this executing machine, executing job 1 in machine A or it could be some other this

this thing that A, ,. But whatever it is, you see that you know this new is the new sorted

load vector, this is strictly less than the sorted load vector we started with.

But you know the we assumed that this sorted load vector that we started with
(A5...,4,), is this is one of the smallest sorted load vector. There is no other sorted load
vector which i1s smaller than that, then it is a contradiction. Because I have found another
sorted load vector which is smaller than that and that cannot happen, because we have

defined a complete order.

Any two sorted load vectors we can compare, so this makes the ordering complete and
we have a finite set of sorted load vectors, because there are finitely many assignments

possible. So, I have a complete order on a finite set. So, the minimum must be unique

and if (,,...,A,,) is a is a minimum, then there cannot be another minimum and which

is a contradiction.

(Refer Slide Time: 22:16)

T adulds ot dad (00 M) b Hhe

mallust gwh«l L vech . ?

5"-!/{\'11" L BJM(.(? Zwm, A

wi Tie Db “'; D"*]
= . ; ome (peed seh "
o 0D oot (me ped) - mockos
4 ot 20

me|

D’“"f' Gnce e mecdhints ane Halied, Wms u),}/

M /?:| V’jﬂ*—), q

Let me write, but this contradicts our assumption that (A4,,...,4) is the smallest sorted

load vector. So, this results our fundamental question that you know does price of
anarchy make sense here, does there exist a PSNE, yes. In this game there exists a PSNE.
Now, we will show a price of anarchy bound for this selfish load balancing game. So,
here is the theorem, the price of anarchy bound of selfish load balancing game in its full

generality is out of scope of this course.

So, we will prove the price of anarchy bound for a special case, for an important special
case. The price of anarchy of any selfish load balancing game with n jobs and m identical

machines; what do you mean by identical? Their speeds are same. Identical machines is

the price of anarchy is at most 2 — .
m+1

Proof: first observe that since the machines are identical, identical we may assume

without loss of generality, that s; is 1, the speed of all machines are 1 for all je[m]. If

they are not one we can scale the weight of the jobs appropriately, we can if the speeds

are something s; we can divide the weights of the jobs by s; and make the machine the

speed of the machines to 1, that will not change anything.

(Refer Slide Time: 26:22)

Lk pobe & PInE Mﬂ;a”‘wﬂ\l’ (N NQL{M{ {u.,d‘.,,‘

gpan Ll MAX Mo
TR VY mekeSf }e[»)]

Lok o7 be the minmam

(e,
make (("‘ l'"“

PRETORNE ¢

o et 0 g deiged LT g

wa Q0T D, mw W;
(ina 7

T Mt be

Obarag,

Now, let A be a PSNE assignment. What is the social welfare function? It is the make
span, social welfare function is a make span which is maximum load of any machine,
that is the social welfare function let me write. Social welfare function is the make span

of the schedule, make span that is which is maximum load of any machine, ok.

And say let OPT be the minimum makes span possible. First observe that you know look
at this PSNE profile A and ask what is its makes span. So, let C (A), the cost of A, the
make span of A is the highest make span and that is the makes highest load of any

machine. And suppose that is the load of machine j star. Suppose this . first observe that

there must be at least 2 jobs assigned to machine j".

Must be at least 2 jobs assigned to the machine gesture. Why? Because if there is only
one job, then otherwise we have C (A)=lj*, but j* equal to will be then OPT. Why?
Because OPT, since OPT is greater than equal to, because all jobs must be executed
max;c,w;. So, because all jobs must be executed, in particular the maximum weight

drop must also be executed, there must be one machine which is executing the maximum

weight job.

And if j* is the maximum makes is the maximum load and if that is executing only 1 job,
then j* is less than equal to the maximum weight of any job and that it must be OPT and

in that case and then. So, what is wrong with j* being equal to up? Nothing wrong, in

that case we have price of anarchy is 1 and we have nothing to prove, the statement is
already true, because 1 is the minimum price of anarchy that can be attained. So, from
the for the remaining proof, let us assume that there are at least 2 jobs assigned to the

machine j star in the assignment A.

(Refer Slide Time: 30:35)

So, let i"€[n] be a job, assigned to j* in the assignment A. We also can assume we may

assume without loss of generality, that weight of i" is less than equal to %C (A), weight

of i" is less than equal tol;. and [. equal to C (A). Because you know there are at least

two jobs, there must be at least one job which takes less than half amount of load and we

can call that i start, let us call that i star; ok, very good.

ok

Now you see the load of any other machine. So, for any j€[m]\{j"}, you see I, this job
the i" has an option to move from machine j* to machine j. So, I j+w,. must be greater
than equal to [... If this is not the case then there is a beneficial move for the job i *. So,
that is [; is greater than equal to,[. is C (A)—wl.* and w.. is at least half this is greater than

equal to C(A)—%C(A), which is equal to %C(A), very good. Now, we will prove the

price of anarchy bound.

(Refer Slide Time: 32:52)

We will bound OPT. What is OPT? OPT is you know the average length of the average
weight of the of all the jobs by [m]. Now, sum of weights is same as sum of loads. Let us

add the sum of loads, we separate out . and keep the others and [. is C (A), cost of A

and for others it is they are at least %C (A), there are m—1 of them. So, greater than

C(A)+:(m-1)C(A)

. .om+
equal to ; this 1s m+1
m 2m

C(A).

(Refer Slide Time: 33:14)

So, what is the price of anarchy bound? Price of anarchy is cost of A by OPT. And what

is cost of A by OPT? Cost of A by OPT is less than equal to %, is also known as

2 —ﬁ, which is exactly what we need to prove, ok.

Thank you.

