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Swap Regret to External Regret Reduction

Welcome. So, in the last class we have studied no-swap-regret algorithm and we have

seen  that  how  the  no-swap-regret  algorithm  allows,  enables  all  the  players  to

simultaneously converge to a  correlated equilibrium. But  we have left  one important

question untouched that whether there exist a no–swap-regret algorithm. 

Although  we  have  shown  that  there  exist  a  no–external-regret  algorithm  namely

multiplicative weight algorithm, but we have not shown existence of no–swap-regret

algorithm and that is our point of discussion in today’s class.
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So, question. Does there exist a no-swap-regret algorithm? And we do not have to build

up or design a no-swap-regret algorithm from scratch as we did for no–external-regret

algorithm. What we will do is that we will leverage our knowledge about external no-

external-regret algorithm. 

We know that there exist  an algorithm with no-external-regret  namely multiplicative

weight and we will use that algorithm in a Black box fashion that is a very beautiful



technique  and  this  what  is  called  Black  box  reduction  from  no-swap-regret  to  no-

external-regret.

What do I mean by that? It means that if I want to design a no–swap-regret algorithm

meaning that it is time average swap regret must go to 0 as time goes to  , then it is

enough to design a no-external-regret algorithm meaning that an algorithm whose time

averaged external regret goes to 0 as t goes to . 

That is if someone gives me a Black box or no-external-regret algorithm I can use that in

a Black box fashion. I do not need to know it is functioning and using that I can design a

no-swap-regret algorithm. So, the main theorem in today’s lecture is this. So, let as usual

I have n actions players have n actions. 

Suppose there exist an algorithm with extra with time averaged external regret  .

Of course,   will go to 0 if the algorithm is a no-external-regret algorithm. So,

suppose there exist an algorithm with time average external regret , then there also

exists an algorithm with time averaged swap regret n times . In particular, if there

exists a no-external-regret algorithm that is limit T tends to   is 0.
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If  there  exist  no  external  regret  algorithm  then  there  also  exists  a  no  swap  regret

algorithm. Proof: So, let the action set be let the action set of the player, player of the



external regret algorithm not external regret algorithm the swap regret algorithm. So, we

will be designing a algorithm whose swap regret is n times .

So, we are designing a no-swap-regret algorithm of the swap regret algorithm. Action set

of the player be say A equal to 1 to n. And let B be an algorithm with time averaged

external regret . What we first do is that, we take n many copies of B. So, take n

copies of B. What is n? The number of actions. So, each the idea is each copy of B will

mimic one action of the player. Take n many copies of B, let us call it let us call them

 ok.

Now, the idea is that we will build a master algorithm, let us call it H using .

How does the algorithm look? Let us first understand it pictorially.

(Refer Slide Time: 11:08)

So,  here  the  n  copies  of  the  algorithm B  whose  external  regret  is  at  most  ;

 ok and we let them run independently. So, in every iteration B 1 will commit

to a probability distribution   in the t-th iteration t,   will commit to a probability

distribution  ,...,  will commit to a probability distribution .

And there is a master algorithm H which will consider all these probability distributions

that each of these n copies of no-external-regret algorithm; no-external-regret algorithm



commits to and combining these somehow it computes some function of  

and commits to a probability distribution . 

So, this is our algorithm box. So, it is interacting with the outside world which does not

know  about  its  inner  functionality  and  it  is  supposed  to  commit  to  a  probability

distribution in each iteration . And after committing this probability distribution that

so,  it  picks  a  payoff  function   which  it  receives  and  what  it  does  is  that  to  run

 each of them they needs to be supplied a payoff function and it supplies the

payoff function , but it scales it down with  of 1. 

Similarly, it supplies  also  the same payoff function, but it scales it down to 

and  so  on.  So,  what  I  have  not  discussed  till  now is  that  how I  compute   from

. Once I discuss this once I tell how  is computed then that finishes the

description of the algorithm.

So, it takes n copies of no-external-regret algorithm and from their commuted probability

distribution it somehow computes the probability distribution  which we will see now

and then it receives a probability a payoff function  from the adversary from the from

outside  and  it  supplies  those  the  same  utility  function  ,  but  scales  it  down

appropriately. So, it multiplies with   and supplies it to   it multiplies with   and

supplies to  and so on.

So, in the rest of the rest of the proof we will see what or how  should be connected

with  so that the swap regret is sort of minimum. So, let us see.
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So, first what is the time averaged expected payoff? Time averaged expected payoff of

the master algorithm is the transfer t capital T iterations and each iteration it commits to

the probability distribution ; actions are 1 to n that is why let me index use i .

This is its total utility to total payoff and I divide it with capital T to get time average

expected payoff ok.

So, let us pick any switching function and see what would have been its payoff if we

apply the switching function. So, let   be any switching function then the time

averaged expected payoff of the master algorithm modified by ; that means, what? 

Instead of playing i, it plays . Then the time average expected payoff of the master

algorithm modified by delta is same thing, but instead of playing i it should play  and

thus it will receive a payoff of  this is the probability with respect to which

action i is picked, but when action i is picked it is not playing action i it is playing 

and so, the payoff received is  ok.
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What is the goal? We need to show we need to show that the time averaged external time

averaged  swap  regret  1  over  T  t  equal  to  1  to  capital  T    minus

summation t equal to 1 to capital T summation  . This is this should go to

0 as t goes to . In particular we need to show for this particular theorem. This is less

than equal to n times . 

It is a good practice when you are proving some theoretical result to remind, constantly

remind yourself that what we need to show, what is the goal, where we need to reach and

where we are ok. And what do we have? We have that the external regret of each of the

’s is at most n. So, let us use that. 

Since  the  since  each  since  the  external  regret  of  each   is  ,  we  have  the

following. Recall external regret tries to perform as good as any fixed action. So, let us

fix any action say  and what will be its utility? If it keeps on playing . So, if it is keep

on playing  , so, its utility will be and what is the utility function? Utility function is

. What is the utility function given to i th given to ? It is the , given to  is

.



So, given to  is . So,  because  because it plays the fixed action

lambda  minus  so,  from  ’s  perspective  you  see  what  is  the  committed  probability

distribution and what is it play.  the committed probability distribution is . 

With this probability the i th player the i th box  plays the action j and the utility that it

receives is  and the time averaged regret is this less than equal to  this

should hold for all  and  for i because for each player for each action i have a copy

of the algorithm B. So, that is why  and for each  because it is a no external

regret algorithm, external regret is at most , good. 

Now,  what  we do is  that  I  somehow need to  connect  the  equation on  top  with the

equation on the bottom and you see that one easy way to connect is that here we have

 here also you have , but the multiplied term is , here is , but this

the second inequality holds for all . So, what we do is that we put .
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So,  put   in  the  above  inequality,  then  what  do  we  get?  1  over  T  times

 minus t  equal  to  1  to  capital  T   those  things  the  second term

remains same  this is less than equal to . 



Now this we have for all . Now for and A is 1 to n. So, we have n such inequalities

and what we do is that we add all these n equalities n inequalities. Adding all the above n

inequalities,  we get  what?  ,

good.

Now, whenever we have double sum it is always it is often good idea to exchange the

double sum. So, what we do is that we exchange these two double sums and let us see

what  we  get.  We  get  something  interesting.  The  first  term  remains  as  it  is  minus

summation t equal to 1 to capital T ok and what we do is that we basically exchange the

role of i and j. So, what we are saying i before we are saying j and j before we are saying

i because both are on the same over the same indexing set.

So, exchanging the role of i and j . So, whenever we had I will write j and instead of

j I will write i. So,  goes out and this remains inside  this is less than equal

to  ok. Now you see that what was our goal. Our goal is that so, let us recall what

was our goal here. 

So, the first term here exactly matches the first term here and the second term till here it

matches, but now this part now here you have summation. So,   here we have some

other color, here we have  and there we have this. And this tells us how should we

pick we set the  probability distribution  that the master algorithm commits. 

So, let us recall that was the thing that was left to be discussed that how master algorithm

H computes   from   and this  is  how.  It  solves.  What  is  the  requirement?

Requirement is   should be equal to this sum summation j over A  for all I

this should hold.
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So, we set  as a solution to the following system of linear equations  is sum over

  this for all  and we have  must be a probability distribution. So,

  is 1. Now from linear algebra we need linear algebra background to know that

this system of linear equation has a unique solution and so,   is uniquely defined in

terms of this ’s and so, ’s are like constants because when we are computing  s

are given by the . So, these are like constants. 

So,  that  makes  this  a  system of  linear  equations  and  it  follows  from linear  algebra

standard linear algebra that this system of linear equations has a unique solution. So, that

concludes the proof and which basically shows like a let me write a corollary because we

know that there is a algorithm with external regret . So, let A equal to n then

there exist an algorithm with swap regret . So, we will conclude here today.

Thank you.


