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Welcome. So, in the last couple of lectures we finished our study of equilibriums and we

ended up with coordinated equilibrium and coarse correlated equilibrium and they are

polynomial time solvable, we can find them in polynomial time. And, then we asked ok,

but is there any natural algorithms for finding them and then we started studying various

learning  algorithms  and  no  regret  algorithms,  and  we  will  continue  that  topic  of

discussion in in these and next few lectures.
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So,  we are discussing no regret  algorithm,  no  external  regret  algorithm;  no  external

regret algorithm or dynamics. And, we had stated and proved the following theorem in

our last class that if we have n many actions, then there exists an algorithm with external

regret time averaged. Time averaged external regret is O(√ log nT ).

And, the idea was that we used multiplicative weight algorithm and that algorithm is

parameterized by ϵ  and we set  ϵ=√ log nT . Now, you see that to run this algorithm we



need to set ϵ=√ log nT ; n is known beforehand, n is the number of actions available to the

players, but T is the number of rounds that the player is going to play that is often not

known.

So, the problem with this setting is; the problem with setting ϵ=√ lognT  is that we need

to know the time horizon T in advance, which is not known often. So, the question is can

or does there exist an algorithm which does not need to know T, but still can achieve an

time averaged external regret of O(√ log nT ) and that we will see today. That is a clever

and often convenient trick.
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So, let me not write it as a theorem. Let me just write it as a remark or because we can

use the multiplicative weight algorithm at that setting of a put setting ϵ=√ log nT  and sort

of tweak it to sort of engineer it so that we do not need to know T beforehand.

So, as usual suppose I have n actions, then there exists an algorithm with external regret

with time averaged external regret  O(√ log nT ). This part is from before; moreover the

algorithm does not need to know capital T a-priori. Proof: so, suppose this is the time



axis and this is time t equal to 1, 2 and so on. Here is capital T the idea is that break the

time into epochs break or group the time or iterations into epochs.

The 1st epoch is of length 1, 1st epoch is only time 1; the 2nd epoch is of length 2, it is

time iteration 2 and 3; the 3rd epoch is from iteration 4 to 7 of length 4. So, the 1st epoch

is of length 1, 2nd epoch is of length 2, 3rd epoch is of length 4 and so on. The length of

epochs doubles every time.

So, epochs let us call it ξ i for i equal to, i equal to say 0 to l, we will see what will be the

value of l. So, ξ i is the iterations in 2 to the i and minimum of 2i+1−1 and T. So, except

the last epoch it will contain up to T because there is no time after that, but before that

the size or the number of iterations in an epoch will keep on doubling. So, that is thing.
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And, then what we do is that in the beginning of each epoch. So, ok in each epoch; in the

beginning  of  each  epoch,  we  reset  the  weight  vector  of  the  multiplicative  weight

algorithm. Recall the multiplicative weight algorithm maintains a weight vector a weight

for each of the action and it is initialized to 1.

So, at the beginning of each epoch we initialize, we reset the weight vectors of weight

vector of the multiplicative weight algorithm to the all 1’s vector. As if we are restarting

the multiplicative weight algorithm and we use various epsilon in various epochs. So, in



the i-th epoch we use epsilon equal to epsilon i which is √ ln n2  to the i, ok and let OPT i

be the be the payoff of any fixed action in the i-th epoch, ok.

So, borrowing notation from last proof; so, what is regret? Regret is OPT−ν i; ν i is the

expected payoff in the i-th iteration of the algorithm is i equal to 1 to T. So, this is less

than equal to OPT is less than equal to summation of OPT i. So, we make this sum epoch

by epoch. So ∑i

l
OPT i−∑t∈ξ i

ν i.

Now, from last analysis we know that this is less than equal to ∑i=0

l
[ϵ i2

i+ lnnϵ i ]. Now,

what value of ϵ i we have chosen? We have chosen ϵ i=√ ln n2i .
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So, what we get is this is =√ ln n∑i=0

l
2
i
2
+1

. So, this is a geometric series and geometric

series is dominated by the last term. So, this sum is less than twice the last term. So, this

is ≤2
l
2
+2

√ lnn. Now, ≤4√T ln n.



So, the time average regret 
1
T

(OPT−∑i=1

l

ν i)≤4√ ln nT . So, we may not need to know T

and we will pay a extra cost of factor of 2, but it does not matter in asymptotic notation it

is still O(√ lognT ) ok.

Now, here is another important perspective into no regret algorithms which is called

combining  expert  advice.  So,  let  me  write  combining expert  advice.  You know the

problem  of  designing  a  no  regret  algorithm,  problem  of  designing  that  is  a  useful

perspective is sometimes called combining expert advice is also called combining expert

advice.
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Why? Because at every iteration the mix strategy that the player is committing can be

thought of as an experts advice and the goal is to perform as good as the best expert

asymptotically. So, the mix strategy in every iteration, mix strategy of every iteration is

like combining expert advices.

So, you know there are couple of many, there are many experts who are suggesting

various strategies and the player needs to combine them in a randomized order and then

pick according to the distribution. And the goal is to be as good as the best advice which

will be, which will be known only after playing the game. So, the mix strategy is like



combining various  experts’  advice  and the  goal  is  to  perform as  good as  an  expert

asymptotically.

And, that is exactly what the multiplicative weight algorithm is doing. If you look at

carefully it increases the weights on the actions which has more utility. So, in the same

sense it is giving more weightage to action which has performed good in this iteration or

till now and that will in turn will increase its chance of picking that action in the next

iteration.

So, it is in the same at the same time it is both excluding various other options. It is for

no action it is discarding, it can still pick the action. It is not making the probability of

any picking action 0. So, it is keep on exploding, but it is also at the same time exploiting

what it has learnt till now. It has learnt which actions are giving more utilities and so on.

So, that learning goes into updating the weights accordingly.

So, this is  like combining exploration; that  means,  explore various actions and learn

exploration and exploitation, ok. So, very good. Now, we see what is the connection of

this no regret dynamics with the equilibrium concepts. So, connection between no regret

no external regret dynamics and equilibrium concepts.

So, we will see that this no external regret dynamic is very closely connected with coarse

correlated  equilibrium.  If  each  player  runs  a  no  regret  algorithm  under  in  certain

situation, then you know they converge altogether to a coarse correlated equilibrium. So,

what is the setting?
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So, let as usual Γ=⟨N,(Si)i∈N ,(ui)i∈N ⟩ be any normal form game. Now, each player runs

a no external regret algorithm. Now, when do we say that each player runs a no external

regret algorithm, what is the setting? What are the, what are the set of actions available?

So, A i is the set of actions available to player i in its, when it runs the no external regret

algorithm and we set  A i to be equal to  Si. The set of actions available to player i is

actually the set of strategies.

Now,  each  player  will  in  the  t-th  iteration  will  pick  will  commit  to  a  probability

distribution  which  is  over  its  action  set  which  is  same as  strategy set  and  then  the

adversary is supposed to pick a utility function. And the utility function that is picked by

the adversary to the i th player is this ui(si , s−i).

Let me write this way, π i of the payoff of an action si is defined as utility of that player I

receives when it plays on strategy  si when other players are playing according to the

committed  probability  distribution  p−i,  which  is  s−i∈S−i ,ui(si , s−i).  What  is  the

probability that s−i is played? It is each player p j play picks s j , j∈[n] , j≠i. So, this is the

utility.

This is the utility that the adversary picks and then player plays draw picks a action

according to the committed probability distribution and receives the utility. Now, what is

the big deal? How this is connected? How each player running their running a no regret



algorithm make them converge to a coarse correlated equilibrium, that is the following

theorem.
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So, let epsilon greater than 0 and players run their no external regret algorithm for T

iterations,  ok.  T  iterations  such  that  they  are  time  averaged  external  regret  after  T

iterations averaged is at most ϵ .

So, fix and positive fraction ϵ  greater than 0 and each player run their no external regret

algorithm for T iteration such that after capital T iterations the time average external

regret of all the players is at most  ϵ , ok. So, then define distribution  σ i which is the

product distribution of this probability distributions pi
t.  pi

t is the probability distribution

that player i commits in the t-th iteration i∈N , ok.

And, this and then sigma is the average of this σ i’s. Then, the claim is σ  is an ϵcoarse

correlated equilibrium of the strategic form game Γ, that is expected utility of player i

when it plays according to σ  is greater than equal to s sampled from σ  and this player i

plays some other strategy si
’ and other players are play according to this σ .

And, the utility can increase by at most ϵ . So, I need to supply an ϵ , this should hold for

all i∈N  for all si
’∈S i. So, here is a beautiful connection that for pick any epsilon and let

the  players  run  their  no  external  regret  algorithm till  all  the  players  external  regret

becomes at most epsilon. Then you what you do is that in every iteration you take the



product distribution of their committed probability distribution and take their average,

then that average distribution sigma is an epsilon CC.

So, the so, we will see the proof in the next class ok.


