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Multiplicative Weight Algorithm

Welcome. So, in the last class we have started studying No-Regret Dynamics and we

have mentioned that there is a no regret algorithm, no external regret algorithm which is

called Multiplicative Weight Algorithm and this we will see in today’s lecture.
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This lecture Multiplicative Weight Algorithm. So, let us first describe the algorithm. So,

step  1,  it  maintains  a  vector  of  weights  which  in  every  iteration  it  updates.  So,  it

initialized to 1. So, w0(a)=1 for all action a∈A, then for every iteration t equal to 1 to

capital  T. So, it  the committed probability distribution is  pt (a)=wt−1(a) by it is just

probabilities are proportional to this weights. So, I just need to normalize it or let me

write proportional ok.

So,  then  the  adversary  picks  utility  function  π t.  So,  there  is  nothing  to  do  for  the

algorithm. So, it next picks an action a from this probability distribution pt and receives

an utility of π t (a).
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Then it comes to know the utility function  π t and then it updates the rule updates the

weights.  So, after knowing after knowing  π t update  wt (a)=wt−1(a)(1+ϵ )π t (a) ok. So,

epsilon is a parameter we will choose later these for all action a∈A and that is the end of

for loop. So, is the algorithm clear?

So, in every iteration it just picks up probability distribution which assigns probabilities

proportional to the weights, it maintains a weight vector which is initialized to all 1 and

then after knowing the utility function  π t it updates the weight function and it defines

wt (a), the weight of a to be its existing weight wt−1(a)(1+ϵ )π t. So, the more utility the

particular action has in the current iteration it gets more weightage ok. 

So, now, let us see. So, what is the main theorem that we want to prove. Theorem: let us

recall, let A equal to n size of A equal to n; that means, player has n actions. Then the

multiplicative weight algorithm has external regret O(√ log nT ) ok proof.

So, towards that let us define first the probability vector the pt’s are proportional to the

weights,  so  and  how  do  we  define?  We  define  we  divide  each  weight  by  its

normalization  factor;  that  means,  sum of  the  weights.  So,  what  is  the  normalization

factor? Let us call that Γt that is nothing but sum of the weight values ok is nothing but

the sum of the weight values in the t-th iteration ok, good.



(Refer Slide Time: 08:39)

Now, what is the expected utility? So, a expected utility let us call this expected payoff

or expected utility, expected utility is nothing but ∑t=1

T

∑a∈A
pt (a)π t (a) this is nothing

but ∑t=1

T

∑a∈A

wt−1
Γt−1

π t (a) . So, this we will see later. 

And  what  is  the  benchmark?  Let  us  call  it  OPT.  What  is  OPT?  This  is

maxa∈A∑t=1

T
π t (a). So, go over all actions and see which action maximizes total utility

and that utility is my benchmark. So, suppose that this is a star. So, suppose the action

that maximizes total utility is a star. So, this is then π t (a
∗) t equal to 1 to capital T ok.

Now, let us see first we need to. So, what is the thing we need to show, we need to relate

this extra expected utility with the benchmark and the idea is that we will relate both

expected utility and benchmark with  Γt. So, let us see how. So, first what is  Γt is by

definition ∑a∈A
w t (a) the sum of the weights of all the actions in the t-th iteration that is

gamma T.

Now, suppose we want to relate this with the bench mark. So, in the bench mark there is

a star here. So, I want to bring a∗ and the easiest way to bring a∗ is that a∗ is one of a and

so this is wt (a
∗), weights are all non-negative numbers and that is how we got it. Now,



we expand it, what is wt (a
∗), how it is updated? It is wt−1(a

∗)(1+ϵ )π t (a
∗) that is just how

the algorithms updates this weights.

And we continue this, if we continue this then what we get is that this is nothing but

w0(a
∗)∏t=1

T
(1+ϵ )π t(a

∗).  So, let  us continue.  What is  w0(a
∗)?  w0(a

∗)=1.  So, you can

forget it.

(Refer Slide Time: 13:38)

So, what we have let us write we had till now ΓT≥∏t=1

T
(1+ϵ )π t (a

∗). Now, I replace this

product with sum in the exponent. So, this is same as  (1+ϵ )∑t=1

T
π t (a

∗)
 and what is in the

exponent, this is nothing but OPT. So, what we get is that  Γt≥(1+ϵ )OPT.  So, I have

related gamma with OPT that is equation 1.

Now, I will relate gamma with the expected utility. So, let us see, again let us start with

ΓT=∑a∈A
wT (a) some of the weights, expand it. What is wT (a)? It is wT−1(a)(1+ϵ )π t (a).

Now  what  I  do  is  that  this  is  less  than  equal  to  I  use  an  upper  bound  for

(1+ϵ )π t (a)≤1+ϵ π t (a) ok.

So, this I will check, I will let you verify that (1+ϵ )x≤1+ϵ x if x∈[0,1]. This I will let

you verify, why less than equal to because I know I want to combine this equation 1 with

whatever I get from equation 2 and the only way to combine is that I can get a lower



bound for ΓT. If I can fill up this thing ΓT is less than equal to this something which is

hopefully something related to expected utility then I can forget  ΓT and I can directly

relate OPT with the expected utility of the player.
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So, let us continue this. So, what do we have  a∈A? So,  1+ϵ π t (a). So, this is let us

unravel it ϵ  comes outside wT−1(a)π t (a), good this particular expression is very close to

the  expected  utility  let  us  see  here.  So,  this  inside  part  I  just  need  the  normalize

normalizer ΓT−1(a). So, that I provide explicitly.

What is the first term? First term is ΓT−1 and for the second term I provide ΓT−1π t (a).

So, this particular object is exactly the expected utility of the player in the t-th iteration,

this is expected utility in the tth iteration let us call it let us give it a name let us call it ν t

ok. ν T  it is a function of capital T. So, what we got is you can take ΓT−1 as common and

you get 1+ϵν T .

And we can continue this process; that means, again I apply the same process to  ΓT−1

and continue and at the end what I will get is that this is less than equal to this was less

than equal to this less than equal to this was less than equal to Γ0∏t=1

T
(1+ϵν t) . And

what is Γ0? Γ0 is the sum of the weights and all the weights are initialized to 1. So, this is

n∏t=1

T
(1+ϵν t).
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So, what do we get? We get ΓT is less than equal to n∏t=1

T
(1+ϵν t) this is our inequality

2. Now from 1 and 2, 2 says ΓT is less than equal to something and 1 says ΓT is greater

than equal to something.

So, if I just ignore ΓT I get that (1+ϵ )OPT  is less than equal to (1+ϵ )OPT  is less than equal

to n∏t=1

T
(1+ϵ ν t) ok. Very good, now we take let us take log on both side there are lots

of products and exponents. So, OPT ln (1+ϵ )≤ln n+∑t=1

T
ln(1+ϵ ν t) ok.

Now, we will use. So, we will get rid of this logs by using standard inequalities this is

OPT ln(1+ϵ ) for ϵ∈(0,1) ln (1+ϵ )≥ϵ−ϵ 2  this holds for all ϵ∈(0 ,1) less than equal to

lnn as it is t equal to 1 to capital T.

And  ln(1+ϵ )≤ϵ .  So,  what  I  do is I  apply the second one here.  So,  that I  have this

inequality going in the correct direction  ϵ ν t ok. Now I want to separate out OPT. So,

what I do is that I divide both side with epsilon then I get OPT (1−ϵ )≤ lnnϵ  and without

the epsilon the second term is ∑t=1

T
ν t this is nothing but the expected utility in total.
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So, I want to prove time averaged time averaged regret. So, that is OPT minus expected

utility. So, what is OPT minus expected utility?  OPT−∑t=1

T
ν t this is just rearranging

terms ϵOPT + ln nϵ  ok. Now it is time to pick the epsilon and we will pick the epsilon

which gives the this holds for all epsilon. So, we are free to choose epsilon which gives

us the tightest bound. So, see and OPT is what, OPT is at most T this is ϵ T+ lnnϵ  since

OPT is at most T, utility values are in between 0 and 1.

So, in every iteration the utility can be at most 1 and now you pick ϵ  which minimizes

the right-hand side that will give the tightest bond and this is a standard expression put

ϵ=√ lnnT , put epsilon so that these two terms will be the same and then it is 2√T ln n. So,

this  is  the  regret  and  so  the  time  average  regret  divide  both  side  by  T,

OPT−∑t=1

T
ν t≤2√ ln nT  this is exactly what we need to prove ok.

Thank you. So, we will continue from here in the next class.


