
Algorithmic Game Theory
Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 29
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Welcome. So, in the last lecture, we have finished our study of equilibrium concepts. We

finished with coarse correlated equilibrium, and we left with the question that does there

exist  natural  algorithms  or  natural  dynamics  how  people  behave,  so  that  they  can

converge to a correlated equilibrium.
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So, towards that let us take a detour and in it will seem like a detour, but we will see how

that is related to Algorithmic Game Theory. That is called External Regret Framework.

So, what is the setting? So, the setup, the setting you know it is think of it as a game

between a player and an adversary. So, it is a iterative, iterative let me use the term

process to distinguish between say the game, the game of the game theory.  Iterative

process between a player, only one player is there and an adversary.

So, following things happen in every step. Suppose this game runs for T steps, so for

each time step small t equal to 1, 2 up to T. So, the player picks a probability distribution

 over the action sets A. So, let A be the set of actions available. So, let me write A is



the set of actions available to the player, ok. And you know then what does adversary

does? Adversary picks a utility function  from A to 0, 1, ok.
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And then, what? Then the player samples an action  from  and receives a reward 

of  .  Last step,  the player gets to know this entire function  .  So,  it  is a iterative

process. And in every step at the beginning, in every iteration at the beginning, the player

first picks up probability distribution  over its actions and then the adversary can see

, and then based on that it picks a utility function  , which assigns a real number

between 0 and 1, this is just for normalization to every action in A.

And then the player samples action from the probability distribution   and receives a

reward  , if the if a t is the sampled action. And then the player gets to know entire

. You know this setting is very common in real life, day-to-day real life. For example,

think of we want to go from a home to office and there are various paths available. Now,

so the various paths available that is the set of actions that I need to choose from and that

is my set A.

Then, I  pick a path to follow today or it  can be one path or it  can be a probability

distribution over paths, and then suppose it happens that the whatever path I choose that



path looks very bad that  day.  So, it  is like I  am fighting with an adversary.  So,  the

adversary picks the cost, or not cost the utility.

Utility, the adversary picks and adversary is all powerful omnipotent and omniscient. So,

adversary knows my committed probability distribution . And at the time of playing I

pick a I sample a probable sample action  from  and I receive a reward , ok.

So, what is my total utility or not; let us not call it total utility total expected utility across

all  iterations,  total  expected utility? t  equal to 1 to T. What  is  my utility in the t-th

iteration? Summation over  ,  summation over all  actions  .  That is my

total utility.

And what is my regret? My regret is that I can daydream and I think that you know at

every iteration I could have picked that action which has the highest utility. So, regret

that is my regret. Regret is what is the maximum utility that is possible in every iteration

. Whichever action has the highest utility, I wish that I could have played

that action. 

So, that is the best that I can get. And what I am getting is my expected utility, ok. Now,

what is my goal? My goal is to have less time average regret. That means, I know that I

know the reality and I am happy if I can eventually learn even or I can eventually do as

good as the, as good as the base that I can do.
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So, the that is why this notion is called a time averaged regret. What is it? You just

divide total regret by time, ok. And an algorithm, a method, a methodology to play this

game is called a no regret dynamic if my time average regret is 0. So, what is a no regret

algorithm or no regret dynamic? No regret. If time average regret goes to zero, if or

when T goes to infinity, ok.

So, question, does there exist any such no regret algorithm; so, any no regret algorithm?

And the answer is no. What so? Why no? So, let us see. Let us see an adversary, which

will guarantee that this time average regret will not go to 0, as t goes to infinity.
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So, n is  the size of action set.  So,  assume  ,  there are 2 actions.  So,  there is  an

adversary. What is adversary’s job? Adversary’s job is to pick the utility function pi t in t

iteration cleverly.

And  what  it  knows?  It  knows  the  action  set  A  and  it  also  knows  the  committed

probability distribution  of the player. So, and it needs to define the utility function 

of, so suppose A equal to  and , it has only two actions. , it will define it to be

1 if . It will define   and . 

This utility function it will pick if player 1 assigns more probability to , and no this. If

player 1 assigns more probability to  that at which is at least 50 percent or more than



50 percent, then the adversary will define the utility of  to be 0 and utility of  to be 1

and the reverse other way. So,  and  , if the other thing happens; that

means, if  .

Now, what is the benchmark? This is called benchmark. So, let me see. The thing that we

are comparing with this is called benchmark B. So, what is the benchmark? B equal to

capital T; because, in every iteration there is an action, which gives utility of 1 and so

maximum utility can be what can be obtained is capital T.

And what is the expected utility of player? What is the expected utility? You know this is

less than equal to. In every iteration the player plays the action which gives utility 0 with

probability  at  least  half.  So,  it  can,  it  plays  the  action  which  gives  utility  1  with

probability at most half, so in every iteration its expected utility is at most half. And

because there are t iterations, its expected utility is at most t by 2.

(Refer Slide Time: 19:26)

So, what is the time average regret? Time average regret is 1 over T; this is greater than

equal to  . So, it does not matter how the player will play. This adversary is so

strong that it will ensure that the time average regret of the player is at least half, good.

So, what is wrong? So, what we do is that we weaken the adversary. So, the idea is



weaken the adversary or weaken the adversary or benchmark, or not adversary, weaken

the benchmark, weaken the benchmark not adversary.

Define. So, before we were saying that I want to compare my utility to be as to the

condition when I would have picked the best action in every iteration, now I am saying is

that, no. So, let us compare me with a player who plays a fixed action, but that across all

iterations. But that action can be whatever.

So, let me write. So, if some player is playing action A, then what is its utility? So,

 is the utility of player if it is playing action B, good. And then I want to pick

that action which is the best, ok. So, this particular framework is called external regret

benchmark. This particular benchmark is called external regret benchmark, ok.

Question, does there exist any algorithm or any dynamic which achieves no external

regret, that means, the time averaged external regret going to 0 as time goes to infinity?

Does there exist any no-external regret algorithm? Answer is yes, which we will see just

now.
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So, no, this also called no regret algorithm. So, if not mentioned, otherwise it is assumed

that no regret means that no external regret. In a subsequent lectures, we will see some

other kind of regret that will be different benchmark and we will see. But for that, for the

time being let us now focus on no regret algorithm.



So, what is the main theorem? What is the crown jewel? Theorem, let size of A be n,

then there exists a no regret algorithm whose time average regret is   ok. So,

as you can see that as t goes to , then this external regret goes to 0. So, it is a corollary

from this theorem, that there exist a no regret algorithm whose expected time average

regret  is  at  most  epsilon,  of  course  for  any epsilon  greater  than  0,  after  

iterations, ok.
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And these are very famous algorithms. This is because; this regret framework is very

useful. And it has been independently developed not because of game theory and it has

been this later we will find this connections. So, this no regret algorithm and this regret

framework you will discover in many other areas of computer science and mathematics.

So, we are doing this thing now. And at the end we will see what is its connection to

game theory.

That is why we started that; why these are, why or the unsatisfaction with equilibrium

motions where that you know although the correlated equilibrium and coarse correlated

equilibrium were polynomial time solvable they can be computed in polynomial time.

You know in many real life human being are the players and they do not solve a linear



program to find what to do. So, they sort of repeat their action every day and learn from

there. 

So, does there exist such learning framework or which is in some sense natural which led

them discover this correlated equilibrium or coarse correlated equilibrium over time. So,

the  algorithm  is  called,  the  algorithm  is  called  multiple,  it  has  many  names,

multiplicative weight, MW or it is also called hedge algorithm or and it has also some

more name. So, we will continue from this in the next class. And in next class, we will

see this description of Multiplicative Weight Algorithm this is a very simple algorithm,

very powerful, and we will see the proof of this results also, ok.

Thank you.


