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Fast Convergence of Best Response Dynamics

Ok, welcome. In the last class, we were studying Best Response Dynamic and epsilon

best response dynamics and potential games. And at the end, we stated a theorem which

states  that  under  mild  assumptions  the atomic  network congestion  games always  for

atomic network congestion games epsilon based response dynamics always converges to

a pure epsilon PSNE quite fast. Now, we will see its proof today.

(Refer Slide Time: 00:58)

So, let us briefly recall what was the theorem, in an atomic. So, what does the word

atomic  means?  Atomic means,  it  means that  the number of players  is.  So,  high that

between every two paths every pair of paths and every small and for all small numbers,

let me write here what does atomic mean. So, suppose here is a path and here is another

path.

And suppose λ1 is the amount of fraction of total traffic that is following this path the

top path, and λ2 is the fraction of total traffic which follow which are following the

bottom path. It says that for any arbitrarily small positive integer say δ , it is possible



to shift a delta fraction of traffic from say top path to bottom path that is what the what

atomic means.

In an atomic network congestion game, suppose the following holds. So, what are the

conditions? The source and destination are the same for all the players; are the same for

all the players. The cost function satisfy alpha bounded jump, the cost functions satisfy

alpha bounded jump condition. And max gain version of version of epsilon best response

dynamic is used. Then, and epsilon PSNE will be reached in O(nαϵ log ( ϕ (s0 )
ϕ ( smin ) )) number

of iterations, this in this iterations ok. So, we will see up see its proof today. 

(Refer Slide Time: 05:21)

Proof ok. So, let s be a strategy profile which is not an epsilon PSNE. What is the high

level  idea of the proof? We will  show that  you know in every iteration  the drop in

potential is significant and which makes sense. We are starting at ϕ(s0) and if we have

to reach at ϕ(smin) then at every, and if we have to reach fast,  Then, every step we

should be able to reduce the potential by significant amount and that is the spirit of the

proof. So, the proof has two parts.

Logically, in the first part we show that there exists player i there exist a player whose

cost in the strategy profile s is high, that is the first part. With this, in the second part in

the second part, we show that you know if player j is chosen by the max gain version of



epsilon best response dynamics, then the drop in potential is some significant fraction of

the cost of.

So, in the first part we are showing that there exist a player say i whose cost is high; and

the second part will show that if player j is chosen and in the chosen in the max gain

version of the epsilon best response dynamics, then the drop in potential is some good

fraction of the cost of player i in s. So, that is the high level structure. So, first part there

exist a player i whose current cost is high and in the second part will show that if player j

is chosen and the move that is chosen by the max gain version.

Then,  the  drop in  potential  which  is  same as  the  drop in  cost  for  player  j  is  some

significant fraction of player i. And because player is cost is high that implies that are the

dropping potential is also high, and from there we will we will be able to conclude.

(Refer Slide Time: 10:35)

.

So, first part there exist a player i whose cost is high. So, to make the proof modular, I

have broken it down into few claims. So, in every strategy profile s there exists a player.

Let us call it i∗∈N , such that Ci∗(s)≥
ϕ(s)
n

; that is what we mean by the cost is

high. Proof: very easy proof. So, we define C(s) a function on the strategy profiles, it

is not a potential function. It is simply the sum of costs. So, now, what is the sum of

costs? 



From edge wise, the cost of player i let us recall in the network congestion game the cost

of player i is see its path and you add the cost of all the edges in that path. Now, you look

at the same sum from edge perspective.

So, you go over all edges e∈E [G ] . Now, what is the cost of this edge? ce (f e) ; and

how in to how many players this must this particular cost ce (f e) is getting contributed

that f e many  players,  because  that  is  the  flow.  Now,  we  will  compare  this  with

potential  function.  What  is  potential  function?  What  was  Rosenthal’s  potential  for

network congestion game? Let us recall, ϕ(s) is ∑e∈E [G ]∑i=1

f e ce ( f e)  ok.

Now, I would again request you to pause this video and you try to see your proof that

ϕ(s) is less than equal to C(s) . Please pause the video and try to prove it yourself,

it is not a difficult proof ok. So, let me explain. So, you see that you see this these two

quantities ϕ(s) and C(s) from edge perspective and this. So, focus on a focus on an

edge e and the contribution of this edge e to C(s) is f e×C(s) you can see ce (f e) .

You  can  think  of  we  are  I  am adding ce (f e) , f e many times.  But,  for  potential

function  I  am adding ce (f e) only  once  and I  am adding ce (f e−1) and then I  am

adding ce (f e−2) and so on. Because, ce is a cost is a non decreasing function, then

the contribution of this edge e is always at contribution of this edge e in the potential

function is at most the its contribution in C(s) .

And this holds for all the edges and so we have this inequality. Now, what is C(s) ?

C(s)  is nothing but sum of costs. So, if some of this n numbers is at least phi of s and

simply by averaging principle, if sum of n numbers is at least something then the average

there exists at least one term whose value is at least average then there exist implies there

exists a player i. Let us call i star in N such that C i star of s is greater than equal to

ϕ(s)
n

ok. So, this concludes the proof of the claim ok.
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So, this is the first part. There exists a player i namely i∗ whose cost is high means at

least ϕ(s)
n

. Now, we prove the second part, claim: So, let j makes a move from s j to

s j
’ in the max in the current iteration of the max gain version of epsilon based response

dynamics. Then, we want to show that that change in potential is significant.

Now,  change  in  potential  is  same  as  change  in  cost  of  j;  that  means,

C j(s j , s− j)−C j(s j
’ , s− j) . This is greater than equal to epsilon by alpha times Ci(s)

for  all  player i∈N .  In  particular,  for  that  player i∗ whose  cost  is  high.  So,  this

shows that this is this is greater than equal to for all C(s)αϵ by α times the cost of

all the players.

So, proof: So, two cases case 1. So, let us fix a player i. So, let fix a player i∈N for

which we will show this result and they say this is an arbitrary player. So, first case, case

1 is suppose player i has an epsilon move; now because player i has an epsilon move, but

player i has not been. So, we can assume i≠ j . So, i≠ j . So, although player i has an

epsilon  move,  but  player  i  still  has  not  been  chosen  by  the  epsilon  best  response

dynamics the max gain version of epsilon best response dynamics.

That means, the drop in cost of player j s is at least the maximum drop possible in the

cost of player i by unilateral deviation ok good, but you know player i has an ϵ  move;

that  means,  it  has a unilateral  deviation  which can reduce its  cost  by ϵ fraction its



current cost. So, this is and if  I am taking max; that means, is greater than equal to

ϵ×Ci(s) . 

And because α is greater than one this is again greater than equal to ϵ
α×C i(s) which

is what we need to prove in the claim. So, for case 1 we are done. So, for case one when

player i has an ϵ move it is very easy to prove.

(Refer Slide Time: 22:27)

Case 2: we just need to do little bit more work. Player i does not have an epsilon move

ok. Now, you see till now we have not used so many assumptions in the statement for

example,  alpha  bounded  jump;  for  example,  all  players  have  the  same  source  and

destination. Now, we are we will use the our assumption that all players have the same

source and destination.

Because player i and player j has the same source of destination, the strategy which is

nothing but a path for network congestion game is available the strategy s j the strategy

s j
’ is available to player i also, but it is not reducing its cost by at least epsilon fraction

its current cost. So, you have that cost of i when it deviates from s i to s j
’ unilaterally,

this is more than 1−ϵ times its current cost is equation 1. On other hand, this particular

strategy s j
’ reduces the cost by at least epsilon fraction of its current cost for player j.

So, C j let me write; however, player j has an ϵ move; that means, it has a strategy it

has a unilateral deviation which reduces its cost by at least ϵ fraction its current cost



and we are taking the max gain version. So, C j(s j
’ , s− j)≤(1−ϵ)×C j(s) is equation 2.

Now, you see, now we will use the alpha bounded jump property.

So, from 1. So, what we had from 1? Not from 1, due to α bounded jump property due

to α bounded jump property you know you compare with the cost Ci(s j
’ , s−i) with

this cost C j(s j
’ , s− j) . You see that you know for each edge, the traffic can the load can

change by at most 1. So, this is less than equal to α times this. So, the cost of each

edge can differ by at most 1. This is less than equal to α times this equation 3.

Now, you see we will compare Ci(s) and αC j(s) , let us see. So, what is Ci(s) ?

So, from one Ci(s) is greater than Ci(s j
’ , s−i) by 1−ϵ , but Ci(s j

’ , s−i) , sorry this

is not greater than this less than; this is from equation 1. Now, you we apply equation 3,

and this is less than equal to Ci(s j
’ , s−i) is less than equal to αC j(s j

’ , s− j) by 1−ϵ .

So, this inequality is due to equation 3, inequality 3.

And now we apply inequality 2 this is less than equal to C j(s j
’ , s− j) is (1−ϵ)×C j(s)

by 1−ϵ this 1−ϵ cancels and what we have is αC j(s) . So, what I have is this is

equation 2 Ci(s)<αC j(s) very good.
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And now we also have this chain of inequality. So, let me see yeah previous page. So,

from equation 2 you see the drop. So, what we need to show? We need to show that



C j(s j
’ , s− j) .  So,  let  us  write  this  quantity;  by  equation  2,  this  quantity  is  at  least

ϵ×C j(s) by equation  2.  So,  from 2, C j(s)−C j(s j
’ , s− j) is  at  least ϵC j(s) ;  and

C j(s)  is. So, from here C j(s) is strictly greater than Ci(s) by α .

So, you put it here is strictly greater than
ϵCi(s)

α . This is exactly what we need to

show  in  that  claim.  So,  what  we  have  is  that  is  that  the  drop  in  potential

ϕ(s)−ϕ(s j
’ , s− j)  is what? It is a drop in cost of player j C j(s)−C j(s j

’ , s− j) . And is

what? This is at least epsilon sorry epsilon by alpha times max over C i of s because that

this holds for all (Ci)i∈N , i≠ j .

And we have shown that there exist a i namely i∗ for which Ci(s)≥
ϕ(s)
n

. So, we get

ϵϕ(s )
nα

. So, the current potential current value of potential drops by ϵ
nα

 fractions.

So, the number of iterations needed to find an ϵ PSNE. Now, what is this? Is let us see

just need some more calculation.

So, from here we see that ϕ(s j
’ , s− j) is less than equal to 1− ϵ

nαϕ(s)
, correct. Now,

from here I let you check that the number of iterations needed is O(nαϵ log ( ϕ (s0 )
ϕ ( smin ) ))

which proves the theorem ok.

Thank you.


