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Succinct game

Welcome. In the last class, we started the computational problem of finding equilibrium.

So, we will continue this for few lectures now.
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Computing  equilibrium  and  in  the  last  class  we  have  seen  a  support  enumeration

algorithm for NASH problem for 2 players. So, what was the NASH problem? Given a

game in; given a game in mixed strategies given a game in normal form, we need to find

a  mixed  strategy  NASH  equilibrium.  But  what,  but  why  mixed  strategy  NASH

equilibrium? Before that what about computing pure strategy NASH equilibrium. 

So, let us spend some time on the problem of finding pure strategy NASH equilibrium

today. So, or not finding the paned computing, computing a PSNE. What do you mean

by computing? Given a game in normal form, we need to find a pure strategy NASH

equilibrium. Given a game Γ=⟨N, (S i)i∈ N ,(ui)i∈N ⟩, given a game in normal form find a

PSNE; Pure Strategy NASH Equilibrium.



Now, I say that this problem is trivial, let us understand. So, why it is very easy? So, first

observe that checking if a given pure strategy profile is a PSNE takes polynomial time,

why? So, why polynomial? So, how? So, let us first write down what is input length.
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So, for simplicity let us make some assumptions. So, let we have let all the players, let all

players have s strategies and there are n players. So, how many; so, ok. So, what is the

number of strategy profiles? So, the number of strategy profiles is  sn. Now, for each

strategy profile I need to tell what is the utility in the strategy profile of each player. So,

the input consists of n times s to the power n utility values which are basically numbers,

real numbers or rational numbers. So,  for computation we can assume that these are

rational numbers only.

So, when we say that something is polynomial, we mean polynomial in the input size;

polynomial in n and sn. Now, given a strategy profile how can we check whether the a

given  pure  strategy  profile  is  a  PSNE or  not?  We  go  over  all  players  and  look  at

unilateral  deviations.  Now, there are  n players and for each player there are s  many

unilateral deviations. So, in n times s in this time is required to check if a pure strategy

profile is a PSNE.

So, the simple algorithm of simply iterating over all  strategy profiles,  all  sn strategy

profiles and spend O(n s) time to check whether that strategy profile is a PSNE or not.



The total  time required  is  n ssn.  So,  we can  find  of  PSNE of  course,  if  it  exists  in

O(n sn+1) time which is polynomial in input size which is n sn.

So, that is why we say that a PSNE can be computed in polynomial time in general. But,

you know there are some special kind of games, there are some important classes of

games where it is not necessary to list down explicitly all these n sn utility values. There

are other succinct ways to represent the game and if it is possible to represent the game

in in space much less than n times s to the power n plus 1, then it is not the case that this

algorithm  is  polynomial  time  runs  in  polynomial  time.  So,  let  us  see  a  few  such

important classes of games.
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So, those games are called succinct games, important classes of succinct games. Our first

example is a graphical games, its a very well studied class of games. So, we have a

directed graph G on the set N of players ok. And, what does this graph signifies? Is that

the utility of a player i depends only on the players who have a directed edge to i ok.

And of course, the utility of player i depends on i itself including i. So, if here is the

player i and here is player j and if I have a directed edge from i to j; that means, player i's

utility depends on the action or the strategy played by the player j. So, if so, what is the

input size now? If the in degree of G is at most d, in degree means that you for every

vertex how many incoming edges are there.



Now, for every vertex there are d many incoming edges; so, we just need to vary. So, if

there are d many incoming edges to i say then we just the; so, the utility of player i

depends on the strategy played by this d in neighbours and the and the strategy played by

i. So, the strategy profile that we for which you need to write down the utility value of

player i is sd for those n neighbours and of course, there are s many strategies for player

i.

So, s to the power d plus 1, this is the number of strategy profiles for which I need to

write down the utility of player i and this this I need to do for all the for each player and

there  are  n  players.  So,  it  is  n  times  this.  Then,  this  many  numbers  are  needed  to

represent the game. So, if d is small, you see this is a significant savings. If t is constant

say this is much less than n to the n sn+1.
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Our second class of games is what  is  called sparse games.  So, in this  type of game

utilities are 0 or always 0, except for few strategy profiles. So, in all, but a few strategy

profiles give non-zero utility. So, if the game is like that then instead of listing down all

those 0’s, you can simply skip them. And, for all those strategy profiles which has some

non-zero utility, we can list them down and for them we can write down what is the

utility of each player in those strategy profiles. So, that is sparse game. 

Our third important class of game is symmetric games. So, here all players are identical.

Hence,  what  do  you  mean  by  that?  That  means,  the  utility  of  a  player  depends  on



because all players identical their strategy set is also same. And, the utility depends on

the strategy played by the player of course,  and the number of players playing each

strategy.

So, suppose there are 10 strategies and I am a player, my utility depends only on say how

many players play strategy 1 and how many players play strategy 2, how many players

play strategy 3 and so on. In particular, if I take two strategy profiles, but the number of

players who plus strategy 1 is same in both the strategy profiles and number of players

who play strategy 2 is same for both the profiles and so on.

And that means, for every strategy the number of players played the number of players

who play that strategy is same in in both the strategy profiles, then for me the my utility

will be same. And, my utility depends only on the strategy I played. And, all the players

who play that for example, suppose I have played strategy 5 and suppose there are 10

players who have played strategy number 5. Then, all those 10 players who have played

strategy number 5 will receive the same utility; that is what we mean by players are

identical. 

The names of the players does not matter. The utility matrix are symmetric and it only

depends on how many how many play how many how many players play a particular

strategy. Typically, voting situations are very natural where this symmetric games are

used. Symmetric games capture the voting setting various voting settings very aptly.

For example, to decide the winner it does not matter who voted for which candidate. All

it matters is that how many votes, how many voters have voted candidate 1, how many

voters have voted candidate 2 and so on. The our next example is anonymous games. It

is a generalization of symmetric game and the utility still depends on the. So, the utility

still depends only on the number of players playing each strategy.

But, the difference from symmetric game is that you know the utility the players who

have played the same strategy, they can receive different utilities that can happen for

anonymous games. So, what is the number of numbers we need to write to represent

anonymous games? So, focus on one player, fix one player. It has s many strategies to

play. And, what is the other players how many ways other players can play?



So, and we will count we will if two strategy profiles give rise to the give rise to each

strategy being played by same number of players, we will count them as 1. So, that way

the number of remaining players is  n−1 and there are for each of them there are s s

strategies. So, C s−1
n−1  . 

So, these are the number of numbers I need to write for each player and there are n

players.  So,  these  n s C s−1
n+ s−2 ,  numbers  in  input.  What  was  what  is  the  number  of

numbers I need to write for symmetric game?
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For symmetric game, how many strategy profiles in this case? n players and each of

them as s strategy profile, s many strategies  C s−1
n+ s−1 . And, for each strategy profile I

need to  tell  for  each strategy what  is  the utility,  because all  players  who play same

strategy will  receive  the  same utility;  so,  s  times this  ok.  So,  this  is  the number of

numbers I need for symmetric games. 

Our next example is network congestion games, network congestion game. So, here we

have a graph G and each player has a source and destination, has a source s say si; each

player i has a source si and destination t i ok. And, for the load of each edge, the load le of

each edge is the number of players using that edge ok. And, for each edge there is a

congestion function or cost function. 



Each edge e has a non-decreasing cost function ce which depends on load which is the

function from say set of natural numbers load to or it is better to write it as a set of real

numbers to real numbers, its non-decreasing. If the load increases, the cost increases. It is

often useful to encode delay to represent delay in this thing this way. And, the strategy

set of each player, strategy set of player i is the set of paths from si to t i in G ok. And,

how will you compute the utility?
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So, let (Pi)i∈N  be a strategy profile. So, the utility of player say i in this strategy profile

(Pi)i∈N is because we are working with cost we can write minus summation of edges in

this path ce of l of e. Look at the load in this edge and from the load you compute what is

its cost. And, you sum over the cost of the paths along sum of the sum over the cost of

those edges in along the path and that is the cost. And if you want to write utility, you

take minus of it. So, this is what is called network congestion game. 

So, in next class we will see some more important class of succinct games ok.


