
Algorithmic Game Theory
Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 14
Yao’s Lemma and its applications

(Refer Slide Time: 00:38)

So welcome, so today we will do an very important application of metric schemes which

is famously called Yao’s Yao’s Lemma. So, let me explain the background this Yao’s

lemma is very useful for proving lower bounds for algorithms. So, let us take a concrete

example. Let us take comparison based sorting algorithms.

So, any sorting algorithm is called a comparison based if the only way to infer to know

whether to among two elements which one comes before and which one comes after is to

compare them, that is it there is no other ways. Examples of comparison based sorting

algorithms are say quick sort, march sort, insertion sort, bubble sort, selection sort and

everything, hip sort. 

There are sorting algorithms which can sort integers which are not comparison based like

counting  sort,  radix  sort.  So,  we are  not  talking  about  those sorting  those  sort  non-

comparison based sorting algorithms we are only focusing on comparison based sorting

algorithms. And the base running time that we know is O(n log n)  to sort n items. 



And we also know so we know that any comparison based sorting algorithm must make

omega n log n comparisons. Any comparison based deterministic sorting algorithm not

probabilistic  and the proof  typically  goes  by via  decision  tree method.  So,  proof  by

decision trees I  am not going into the proof if you have not seen the proof I would

strongly recommend you to see the proof it is in any standard textbook of algorithms you

will be you will find plenty of YouTube videos and online materials. So, this elegant and

a nice proof.

Now,  we  can  ask  ok  so  maybe  any  deterministic  algorithm  may  not  breach  the

Ω(n logn)  barrier how about a randomized algorithm. So, what is the main question.

So, can randomization help us break the omega n log n lower bound. So, we have seen

that the randomized quick sort its worst case running time is O(n2) , but its expected

running time or average case running time is much faster its big o of n log n which is

significantly faster than O(n2) .

So,  that  way  can  there  exist  a  randomized  algorithm  whose  expected  number  of

comparisons is less than Ω(n logn) . And the answer is no and this is the main topic

of our discussion we will prove using Yao’s lemma. But before that let us see let us dig

into what do we mean by randomized algorithm.

(Refer Slide Time: 05:52)

So let me write this way. 



(Refer Slide Time: 05:59)

A  perspective  of  randomized  algorithms  you  know  randomized  algorithms  are  like

deterministic algorithm except every now and then it has an access to some random bits.

So, it has an access to a random fare or fare coin which it can toss and depending on the

outcome of the random event it can decide its course of action.

So, by some magic if we can fix the outcome of those random events beforehand then its

a deterministic algorithm. So, here is the perspective. So, a randomized algorithm can be

viewed can be equivalently viewed, randomized algorithm can be equivalently viewed as

probability distribution over the set A (si)  such that si∈{0,1}n  set of deterministic

algorithms what do you mean by that.

So, suppose the algorithm makes small s number of random coin tosses the outcomes are

0 1. So, s i  is A string of length s a binary string of length s and if you fix the outcome

of  those  random  coin  tosses  to  be  si ,  then  let  calligraphic  A (si)  is  the

deterministic algorithm which is which you obtain by fixing the outcome of the coin

tosses of the randomized algorithm to be s i . 

So, there is certain probability of happening the outcome of that those s spin random coin

tosses to be si . So, randomized algorithm a is this deterministic algorithm A (si)

with that probability. So, this is what we mean by it is a probability distribution over a

set of deterministic algorithms and this perspective will be extremely useful. 



So now, let  us state Yao’s lemma.  So, its  a mouthful  of statement,  but let  me write

theorem popularly noses known as Yao’s lemma. So, let A be a randomized algorithm; A

be a randomized algorithm for some problem  Π . For example,  Π  could be the

sorting problem and A could be a quick sort ok. So, its a randomized algorithm. 

So, randomized pick it picks the pivot uniformly at random state. For an input x, let T of

A comma x be the random variable denoting the cost. Cost is a general phrase to denote

anything like time or space or say number of comparisons for sorting what we will use.

Let  T (A ,x )  be  the  random variable  denoting  the  cost  of  A on  x.  Why random

variable because A is not a deterministic algorithm, so it is not a fixed one number its a

random variable its it takes certain values with certain probabilities ok.

(Refer Slide Time: 12:32)

Let cal X be the set of all inputs for that problem be the set of all inputs to Π . For

example, for sorting for the sorting problem it is the set of all subset of n integers on of

length n, X be a random variable with having distribution say p on x. So, I am also

defining another distribution probability distribution p on the set of all inputs is, this is

independent of the given algorithm. 

The  given  algorithm  does  not  have  any  distribution  on  the  input  I  am  defining  a

distribution I am not defining it let X be a random variable and let p be a distribution ok.

And some more terminology let A  Π  be the set of all deterministic algorithms for

Π , then we have the following.



What is the expected running expected cost of the algorithm A. So, the random variable

was T of A comma x this is the random variable denoting the cost of algorithm A on

input s on input x. I want to find the expected cost because its cost is not fixed it is a

random variable it takes certain values with respect to certain probabilities. And I want to

take max of this max over x over all possible inputs I take that input which maximizes

this expected utility expected cost. So, this is the worst case expected cost.

The Yao’s lemma says  that  this  is  greater  than equal  to  min a  in  A  Π .  So,  you

consider an algorithm a small a for the problem deterministic algorithm small a for the

problem pi. And you look at its average cost when you vary the input according to the

probability distribution p. So, T a comma capital X is the is the random variable denoting

the cost of a on X. 

Now here a is a deterministic algorithm, but here input is random and. So, as I vary input

the cost also varies it takes certain values with certain probabilities and says that this is

minimum greater than equal to minimum of a in a Π  expectation of T (a , X ) . And

this looks very abstract and not very useful we will see its use soon by when we prove

that  there  does  not  exist  even  a  randomized  algorithm  whose  expected  number  of

comparisons is is better than Ω(n logn logn) . So proof, but let us prove it this is very

easy.

It is the easier direction of that max min theorem. So, consider a matrix scheme consider

a matrix B where this rows are indexed by this set x the set of all inputs and columns are

indexed by the set of all algorithms ok. The columns are indexed by set of all algorithms

for the problem. And of course, the entries here this say i and this is j i comma jth entry

is the performance of the jth algorithm on the ith input the cost ok. Now, we know that

min  max  is  greater  than  equal  to  max  min,  min  z∈Δ  A (Π)  minimum  over

columns max over rows x in. 

The inner one could be written as written with respect to pure strategies if you recall

because of the averaging principle. exB z  recall ex is the vector indicator vector where

the x-th entry is one all are 0 and we will assume that e x is a row vector and z is a

column  vector  instead  of  writing  transpose  and  those  sort  of  things  we  will  make

assumptions. So, that this matrix multiplication makes sense. This is greater than equal to



max y in delta x max over rows and you should allow randomizations min over a in

AΠ  is cost.

Sorry, this is e y  is a random; y is a random y is a distribution y Be a . Now instead

of taking min if the minimum of this quantities is greater than something then for any if I

replace  min  with  any  particular  any  particular.  So,  what  is  z?  z  is  a  probability

distribution over algorithms for this A pi probability distribution over the deterministic

algorithms. So, z is a randomized algorithm.

So,  minimum over  all  randomized  algorithms.  So,  if  I  pick  a  particular  randomized

algorithm namely the randomized algorithm given to us then still this inequality holds.

Because if minimum is greater than something then any if you replace instead of taking

minimum, if you take something then that is also the greater.  exB z  is like  σA ,

σA  is  the corresponding probability  distribution  for  our  randomized algorithm A.

Same goes here if maximum is less than equal to something then if I pick some particular

value then it is also remains less. 

a∈A(Π)  and.  So,  what  y  I  should  take?  I  should  take  this  y  is  a  probability

distribution over the input I will take x the given probability distribution x Be a . Now

what is this? This is nothing but this costs. So, that is max x in this expected cost of T A

x this is greater than equal to minimum a∈A(Π)  expected cost of T expected cost of

a on X this concludes the proof.

Nothing great, but what is hidden is its power its usefulness. So, let us see its usefulness

while proving this theorem by proving this theorem.



(Refer Slide Time: 22:51)

So, what is the res theorem is any comparison based, any comparison based randomized

algorithm to sort in objects makes must make omega n log n comparisons proof. So, let

A be a randomized algorithm any randomized algorithm randomized comparison based

sorting algorithm ok. And as usual borrowing notations this calligraphic A the set of all

deterministic algorithms the set of all deterministic comparison based sorting algorithms

ok.

And as  usual  just  same notation  a  T (A ,x )  with  a  random variable  denoting  the

number  of  comparisons  made  by  A  on  x  ok.  So,  to  show  what  we  need  to  show

expectation of  T (A ,x )  and I should take max x in this is  Ω(n logn) . Now we

need to show a lower bound.



(Refer Slide Time: 26:38)

So, now using Yao’s lemma let  capital  X be a random variable with having uniform

distribution on the set X of all inputs ok. So, by Yao’s lemma; by Yao’s lemma it is

enough  to  show  it  is  enough  to  show  that  show  that  expectation  of  T (a , X )  is

Ω(n logn)  for every deterministic algorithm a deterministic comparison based sorting

algorithm  a.  Now  you  see  that  by  using  Yao’s  principle  we  have  shifted  the

randomization from algorithm to input.

And  the  on  input  also  the  randomness  is  in  our  hand  we  are  defining  our  suitable

distribution  which  we  are  in  this  case  uniform distribution.  And  now  before  at  the

beginning the randomization was inside the inside the algorithm and we do not have any

clue about how it is sampling and so on. 

Now we have made the algorithms simpler in the sense that it is now a deterministic

algorithm and randomization is also simpler because we know the distribution uniform

distribution in this case, distribution of our choice and on the input. So, now what we

need to show is that because it is a uniform distribution. 

So to show, again from here it is easier it will be easier if you know the proof for the

deterministic  algorithm.  That  for  deterministic  algorithm the  number  of  comparisons

must be  Ω(n logn) . Now here also you view the computation of that sorting as a

decision tree and you the height of the decision tree is must be at least Ω(n logn) .



So, what is that decision tree it is like let me briefly tell. So, each node is a decision node

at every node we are making a comparison we are comparing two elements say ai  and

a j  and depending on we are checking if ai  is greater than equal to a j  or not. If

it is yes then we go to some path and if it is no then we go to some other path and so on.

So, we make some comparisons and at the end we output. Now what is the number of

comparisons? In the number of comparisons right number of comparisons is the depth of

the tree.

(Refer Slide Time: 31:10)

And we know that, go there are at least n factorial leaf nodes. So, the depth is omega n

Ω( logn!)  which is Ω(n logn) . Because we are interested in the worst case bound

then it is fine, but now if you look at the look at the suppose look at the decision tree of

for a, so what is the average depth of any node.

So, suppose our leaf node is here what is the average depth of the leaf nodes, suppose the

leaf node is here not these are binary trees leaf node is here. So, it may now it is fine we

have one or few nodes at long depth if the average depth is small then it is fine, but is the

average depth is also Ω(n logn) . 

So, to show average depth of the leaf nodes of the decision tree for a is omega n log n.

Simply because that is the average number of comparisons that is it. Now, why it should

be the case? Ok. So, the easy case is if the tree is balanced if the. That means, all the leaf



nodes are at the same level as much as possible; that means, if I take any two leaf nodes

either they are have the same depth or their depth can differ by at most one. 

That is what you mean by say balanced tree. If the tree is balanced then the average

depth average depth of leaf nodes is omega log of n factorial which is omega n log n.

Now, it takes a little bit some argument to sort of convince that you know the balance

tree sort of best to minimize the average depth. If you have a un unbalanced tree; that

means, there are two leaf nodes whose depth differ by more than 1 then we can sort of

change it change the tree and it will only increase the balance of the tree and also it will

reduce the average depth of the; depth of the leaf nodes.

So, this way if we make this operations we come to a come to the conclusion that among

all trees the tree which has among all trees, having the same number of leaf nodes the

balanced trees have the least average depth of leaf nodes and that is the depth is also

omega n log n. So, if the tree is unbalanced then also the average depth can only be more

than the balanced one and it is also Ω(n logn) . So, that concludes the proof ok.

Thank you.


