Programming in Modern C++
Professor. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture No. 09
How to build a C/C++ program?

Part 1: C Preprocessor (CPP)

Welcome to programming in modern C++. This is a tutorial and | should rather say that this is a

tutorial to complement your course, in modern C++, we will have several of them.

(Refer Slide Time: 00:54)

/

. . 0

o How to build a C/C++ projects? %

o Understanding the differences and relationships between source and header files -

Od o How C Preprocessor (CPP) can be used to manage code during build? b
L]

Programming in Modem C+-+ Partha Pratim Das To12 &4

So, this is the first one. The objective of this tutorial is to discuss how to build C/C++ projects.
This is not a primary discussion on the language or its features. But you will not be good with the
language or programming unless you know how to build big C/C++ projects programs. So, we
will initially have a series of 4 tutorials over which we will discuss different ways to build and
manage C/C++ projects.

(Refer Slide Time: 01:43)

[ééj Tutorial Outline

@ Totorsl S

«
Programming in Modern C++ Partha Pratim Das o3

In the first one, we will talk about source and header files and the C preprocessor that is basic.

(Refer Slide Time: 01:47)

o Source File: A source file is a text file on disk. It contains instructions for the
computer that are written in the C / C++ programming language
o A source file typically has extension .c for C and .cpp for C++, though there are &

several other conventions
[o Any source file, called a Translation Unit, can be independently compiled into an

object file (*.0) e

o A project ﬁ?y‘c‘ontain one or more source files

o All object files of the project are linked together to create the executable binary file
that we run

o One of the source files must contain the main() function where the execution starts

o Every source file includes zero or more header files to reduce code duplication

o In a good source code organization, every header file has its source file that
implements functions and classes. It is called Implementation File, In addition,
Application Files would be there.

Programming in Moder C+-+ Partha Pratim Das T015 “‘

So, loosely you all understand what is a source file, it is a text file on disk. And they have typical
extensions, .c for C files and C++ .cpp for C++ files. But there are several conventions if your

company is using a certain convention just to follow that. Conceptually, what is the source file?

A source file is one which is a translation unit. That is every individual source file can be
compiled independently by the compiler. That is the actual technical definition of a source file.

So, it will compile and create a binary object file. Now one of the source files certainly has to

include the main function. And when all source files in the projects have been compiled, their

.0’s will be linked for the final executable, we will come to more of that.

In a in a typical style, we expect that the header files, 1 will also define formally what header
files is, but you grossly understand, every header file that you write should have a corresponding
source file. That is a cleanest design. If I have complex.h, there has to be a complex.cpp. If |
have point.h, there must be a point.cpp like that, so that they can be independently compiled.
These are called implementation files. And finally, we will have application files to do whatever

application you are into.

(Refer Slide Time: 03:24)

o Header File: A header file is a text file on disk. It contains function declarations &
macro definitions (C/C++) and class & template definitions (C++) to be shared
between several source files

o A header file typically has extension .h for C and .h or .hpp for C++, though
there are several other conventions (or no extension for C++ Standard Library)

o A header file is included in one or more source or header files

o A header file is compiled as a part of the source file/s it is included in

> Precompiled header (PCH): A header file may be compiled into an intermediate form that is
faster to process for the compiler. Usage of PCH may significantly reduce compilation time,
especially when applied to large header files, header files that include many other header files,
or header files that are included in many translation units.

o There are two types of header files. (More information inld
D Files that the programmer writes are included as #includ
D Files that comes with the compiler (Standard Library) are inclix

ded as #include < For
C++ VAR,

— These have no extension and are specified within std namespace
— The standard library files of C are prefixed with "c" with no extension in C++

.
Programming in Modern C:++ Partha Pratim Das ToLg

A header file is also a text file typically, extension .h for C and .h or .hpp for C++ though several
other extensions have been used or as you have already come to see that in C++ standard library
headers do not have an extension. Now, the difference is headers must be included in one or
more source files, because they are not independently compliable. So, they are not translation

units. There could be precompiled headers and all that.

The important thing to note is there are two conventions for including the header file double
quote, to be used when the header is written by you the application programmer or the, the
programmer person. And this corner bracket should be used for the library inclusion you will

wonder as to why these two differences? very simple. What does the preprocessor do is based on

the type of quoting of whether it is double quote or corner quote, it knows what is the directory,

what is the location in your system, where it will look for that header file.

If you have not given the entire directory path, you are just saying, complex.h or you are just
saying iostream, how does the system know where does that header file exist? So, for standard
library the system has to know and system looks there based on this notation for user defined
header files, the system has a protocol to follow like, it will look at the current folder or it will

look at if there are paths defined into that and so on so forth.

Things vary between Linux and Windows and Mac and so on. But that is the reason you need to
distinguish the header inclusion syntax.

(Refer Slide Time: 05:26)

[;éj Sample Source and Header Files in C

o Header File: fact.h: Includes the header for fact () function
o Source File: fact.c: Provides the implementation of fact () function
® Source File: main.c: Uses fact() function to compute factorial of given values

// File fact.h
// Header for Factorial function
#ifndef __FACT H de Guard

#define __FACT_H

// File main.c
// Application using Factorial function

#include <stdio.h> d. Library Head
#include "fact.h"

int fact(int); int main() {
int n, f;
\lﬁendit // _FACTH // Include Guard. Close
printf("Input n:"); // From stdio.h

// File fact.c scanf ("%d", &n);

// Implementation of Factorial function
ader

#include "fact.h" // User Header f = fact(n);
—=
int fact(int n) { printf("fact(ld) = %d", n, £); // From stgéb.h
if (0 == n) return 1;
else return n * fact(n-1); return 0;
} }

«
Programming in Modern C:++ Partha Pratim Das ToL7 "4

So, quickly this is all you know, this is a header file for factorial, you can see that | have done
something here I will explain that this is called include guard, | will talk about that later. This is
the implementation file fact.c, including fact dot h and this is the application source file, main.c.
So, you should always you should not put all of these into one file and start doing things you

should always organize in this manner.

(Refer Slide Time: 05:56)

o Header File: Solver.h: Includes the header for quadraticEquationSolver() function

o Source File: Solver.c: Provides the implementation of quadraticEquationSolver() function

® Source File: main.c: Uses quadraticEquationSolver() to solve a quadratic equation

// File Solver.h

// User Header files

#ifndef __SOLVER_H

#define __SOLVER_H nc

int quadraticEquationSolver
double, double, double, int main() {

#endif // __SOLVER_H // Include Guard. Clos double a, b, ¢, rl, r2;

1o

// File main.c

// Application files
#include <stdio.h>
#include "Solver.h"

// File Solver.c
// User Implementation files

#include <math.h> L
#include "Solver.h"

int status = quadraticEquationSolver(
a, b, ¢, &1, &r2);

int quadraticEquationSolver(
double a, double b, double c, // I/P

+ldx+%d=0 is Jd %d",
a, b, ¢, 11, 12);

printf("Soln. for %dx

double# r1, doublex r2) { 1
Uses double sqrt(double) from m
R return 0;
return 0; }
}
&
Programming in Modern C++ Partha Pratim Das Tors ’4

Similarly, there is a, this is another example in C with a quadratic equation solver. So, the
solver.h is here, which tells you the solver function, prototype and so on. Then the actual
function implementation in solver.c, the main to use it.

(Refer Slide Time: 06:17)

o Header File: Solver.h: Includes the header for quadraticEquationSolver() function
o Source File: Solver.cpp: Provides the implementation of quadraticEquationSolver() function
® Source File: main. cpp: Uses quadraticEquationSolver() to solve a quadratic equation

|

// File Solver.h: User Header files // File main.c: Application file
#ifndef __SOLVER_H // Inc k #include <iostream> //

#define __SOLVER_H ne using namespace std;
int quadraticEquationSolver(#include "Solver.h" /

4 4

double, double, double, double#, doublex);
#endif // __SOLVER_H // Include Guard. Close int main() {

A double a, b, ¢, rl, r2;
// File Solver.cpp: User Implementation files s

#include <cmath> C Std. L. in C#+
using namespace std;/
#include "Solver.h"

int status = quadraticEquationSolver(
3 a, b, ¢, &rl, &r2);

int quadraticEquationSolver(
double a, double b, double c,

cout<<"Soln. for ”<<a<<"x‘2¢"<<§_«"x"‘<<c"=0 Tai¥s
double# r1, doublex r2) {

cout<< rl << r2 << endl;

{ HEe
s
return 0; return 0;
«
Programming in Modern C++ Partha Pratim Das Tog

This is the same thing you can do in C++ and you should be doing that. So, this is a solver.h this
is solver.cpp including solver.h and the main to make use of it. The same thing will apply
whether you are just having, functions or you are having functions and classes both. Now, the

first thing your code hits. So, we said we will we have written the program will compile and run.

But as we go to compile what does your code encounter first, what it first encounters is a C

preprocessor, which is same for C as well as C++ it is called CPP.

(Refer Slide Time: 07:05)

Eé] C Preprocessor (CPP): Managing Source Code ‘ﬂ‘ :

o The CPP is the macro preprocessor for the C and C++. CPP provides the ability for |8
the inclusion of header files, macro expansions, conditional compilation, and line contrcj

o The CPP is driven by a set of directives
o Preprocessor directives are lines included in the code of programs preceded by a #
o These lines are not program statements but directives for the preprocessor ~ —
o The CPP examines the code before actual compilation of code begins and resolves
all these directives before any code is actually generated by regular statements
o The CPP directives have the following characteristics:

> CPP directives extend only across a single line of code

> As soon as a newline character is found, the preprocessor directive is ends

> No semicolon (;) is expected at the end of a preprocessor directive

> The only way a preprocessor directive can extend through more than one line is by preceding
the newline character at the end of the line by a backslash (\)

g

Programming in Moder C++ Partha Pratim Das ToL1 ‘4

Because it manages your code. It is a macro processor; it does not directly look into your
language. Rather, it uses the preprocessor directives which are preceded by #; #include, #define
these you are already familiar with. So, these are preprocessor directives, every line of your any
preprocessor directive has to be on a separate line, starting with the #, and ends with the newline

character.
If you want to extend into multiple lines, you can put a backslash at the end, there is no need to

give semicolon or anything because it is not a part of the language. He is just trying to manage

your code and some of the hyper symbols.

(Refer Slide Time: 07:50)

Fal C Preprocessor (CPP):

H’H Macro definitions: #define, #undef

o To define preprocessor macros we can use #define. lts syntax is:

#define identifier replacement
® This replaces any occurrence of identifier in the rest of the code by replacement. CPP does not
understand C/C++, it simply gextually replaces
#define TABLE_SIZE 100
int tablel[TABLE_SIZE];
int table2([TABLE_SIZE];
o After CPP has replaced TABLE_SIZE, the code becomes equivalent to:
int table1[100];
int table2[100];

@ We can define a symbol by -D name option from the command line. This predefines name as a macro,
with definition 1. The following code compiles and outputs 1 when compiled with

| 4a 0

$ g++ Macros.cpp -D FLAG
S —

#include <iostream> // File Macros.cpp
int main() { std::cout << (FLAG==1) << std::endl; return 0; }
o Note that #define is importanf to define constants (like size, pi, etc.), usually in a header (or
beginning of a source) and use everywhere. const in a variable declaration is a better solution in
C++ and C11 onward

o
Programming in Modern C++ Partha Pratim Das T

So, quickly this is this is you already know you can this is the #define is an identifier and then
replacement whether there is a form with the parameters form without parameters, you know all
of that. So, when I write this, CPP will replace this and generate this and that is what will be
going to the actual compiler. So, you can define a symbol not only within the source, but you can

define it also at the compilation line.

So, if you say that macro.cpp -D FLAG, then flag will be taken by cpp to have been defined. So,

if you have a check here for flag is 1 once it is defined, it will be taken as 1.

(Refer Slide Time: 08:47)
Y C Preprocessor (CPP):

H’H Macro definitions: #define, #undef

o #define can work also with parameters to define function macros:

SN~ IO

#define getmax(a,b) a>b%a:b 3
® This replaces a occurrence of getmax followed by two arguments by the replacement expression, but
also replacing each argument by its identifier, exactly as a function:
// function macro
#include <iostream>
using namespace std;

4 & 0

#define getmax(a,b) ((a)>(b)?(a): (b))

int main() {
intx =8, y;
y= getmax(x,2);
cout << y << endl << getmax(7,x) << endl;
return 0;

o Note that a #define function macro can make a small function efficient and usable with different
types of parameters. In C++, inline functions & templates achieve this functionality in a better way

«
Programming in Moder C++ Partha Pratim Das Tor13 ,4

Now, macro with parameters there, we have discussed in depth.

(Refer Slide Time: 09:01)
i C Preprocessor (CPP):

HH Macro definitions: #define, #undef

o Defined macros are not affected by block structure. A macro lasts until it is undefined with the #unde 8
preprocessor directive:
#define TABLE_SIZE 100 \/
int cablel[TABLE_S‘Iy;
#undef TABLE_SIZE \/
#define TABLE_SIZE 200
int table2[TABLE_SIZE];

® This would generate the same code as:

int table1[100];
int table2(200];

o We can un-define a symbol by -U name option from the command line. This cancels any previous
definition of name, either built in or provided with a -D option
$ g++ file.cpp -U FLAG

+
® Note that #undef is primarily used to ensure that a symbol is not unknowingly being defined and
used through some include path

«
Programming in Moder C++ Partha Pratim Das ToL14 ’4

Now, what is important for hash define also is the fact that you can undefine a symbol. | am not
sure whether you have seen this before. So, you have defined this and you can undefine it.
Because if once you have defined it, it will be always replaced by that value. If you want to

change that into a different value or a different expression, you can do undefine and define it

again.

So, this is a typical example, like -D defines a symbol -U will undefine a symbol if you do it

from the compiler command line.

(Refer Slide Time: 09:35)

P C Preprocessor (CPP):

El_{ Macro definitions #define, #undef

® Parameterized macro definitions accept two special operators (# and ##) in the replacement sequence:
The operator #, followed by a parameter name, is replaced by a string literal that contains the argume:
passed (as if enclosﬁtween double quotes):

#define str(x) #X

cout << str(test);y/
® This would be translated into:
cout << "test"'/

® The operator ## concatenates two arguments leaving no blank spaces between them:

#define glue(a,b) a ## b
glue(c,out) << "test"]

® This would also be translated into:

cout << "test";

o Note that # and ## operators are primarily used in Standard Template Library (STL). They should
be avoided at other places. As CPP replacements happen before any C++ syntax check, macro
definitions can be a tricky. Code that relies heavily on complicated macros become less readable,
since the syntax expected is on many occasions different from the normal expressions programmers
expect in C++

«
Programming in Modern C++ Partha Pratim Das ToL1s ‘4

il C Preprocessor (CPP):

Lll_i Macro definitions #define, #undef

® Parameterized macro definitions accept two special operators (# and ##) in the replacement sequence:
The operator #, followed by a parameter name, is replaced by a string literal that contains the argume:
passed (as if enclosed between double quotes):

#define str(x) #x
cout << str(test);

| 4a 0

® This would be translated into:
cout << "test";
o The operator ## concatenat;aﬁqo arguments leaving no blank spaces between them:
#define glue(a,b) a ## b
™ glue(c,out) << "test";
® This would also be translated into:
¢ Miogth.
cout << "test";

® Note that # and ## operators are primarily used in Standard Template Library (STL). They should
be avoided at other places. As CPP replacements happen before any C++ syntax check, macro
definitions can be a tricky. Code that relies heavily on complicated macros become less readable,
since the syntax expected is on many occasions different from the normal expressions programmers
expect in C++

«
Programming in Moder C++ Partha Pratim Das TOLIS ‘4

Now, there is an interesting feature, it is the # operator. What it does is it replaces the like it is
like a macro parameter but what it does is it is if I pass x and write #x, then it will actually put
the string that have passed. So, as I do str(test), it will actually generate a coded string like this,
which is very useful in making certain different types of, output strings and format strings and so

on.

Another very nice thing is you can concatenate two parameter strings into one, put them
together. So, let us say if | put if | said there is a macro called glue, which takes a and b and |
said that this is to be concatenated. So, | can write cout what you will, but just to show you what

can be done, | can write cout as glue (cout). So, this will take C as a string out as a string put

them together cout and this is what it is.

So, these are these are primarily used in Standard Template Library, because a lot of template
manipulations are required. So, | would not say that, | encourage you a lot to use them, but know

that these kinds of things exist.

(Refer Slide Time: 11:17)

P C Preprocessor (CPP): -

H’H Conditional Inclusions: #ifdef, #ifndef, #if, #endif, # %

/

® These directives allow to include or discard part of the code of a program if a certain condition is met.
This is known as Conditional Inclusion or Conditional Compilation

o #ifdef (if defined) allows a section of a program to be compiled only if the macro that is specified as d
the parameter has been #define, no matter which its value is. For example:

#i5det TABLE_SIZE v/
int table[TABLE_SIZE]; \/

#endif ——

In this case, the line of code int table[TABLE_SIZE]; is only compiled if TABLE_SIZE was previously
defined with #define, independently of its value. If it was not defined, that line will not be included in
the program compilation

o #ifndef (if not defined) serves for the exact opposite: the code between #ifndef and #endif directives
TS onlyTompiled if the specified identifier has not been previously defined. For example:

#ifndef TABLE_SIZE \/
#define TABLE_SIZE 100
#endif v

int table[TABLE_SIZE];

In this case, if when arriving at this piece of code, the TABLE_SIZE macro has not been defined yet, it
would be defined to a value of 100. If it already existed it would keep its previous value since the
#define directive would not be executed. “

Programming in Moder C++ Partha Pratim Das T0L16

Now, the second thing that the CPP does is conditional compilation or conditional inclusion.
That is, you may want that depending on what has been defined certain part of the code to be
included in the compilation certain part not to be included in the compilation. This is not an if

statement of your execution.

Where a code is the runtime is checking and doing it here you are saying that, do | include this
code in my compilation or | do not. Something that I include will be retained by the CPP
something that | do not include will be removed by the CPP before the code goes to the
compiler. So, for example, | say ifdef TABLE_SIZE, | do not know if the table size is been given

say it is expected to be given from the compiler command line.

But I do not know whether that has been defined, if it has been defined, then | will use it may
have been defined anywhere earlier. So, ifdef will check whether it there exists a definition for it,

if it does, then I can use it. And any if ifdef this kind of directives will always end with a #endif.

So, if it is previously defined, this will be done I can also do if endif, if not defined. For example,

I do it here I said if not defined, not already defined, then define it done with it.

So, when | come to this point, it was either earlier defined or it has been defined now. So, this is

this is the tiny different controls you can easily do in your code.

(Refer Slide Time: 13:20)

Y C Preprocessor (CPR):
JRSY Conditional Inclusions: #ifdef, #ifndef, #if, #endif, #

(R

® The #if, #else and #elif (else if) directives serve
to specify some condition to be met in order for
the portion of code they surround to be compiled.
The condition that follows #if or #elif can only
evaluate constant expressions, including macro ex-
pressions. For example:

#if TABLE_SIZE>200 \/
#undef TABLE_SIZE \//
#define TABLE_SIZE 200 v//

#elif TABLE_SIZE<S0 /

#undef TABLE_SIZE \/ #else
#define TABLE_SIZE 50 #define TABLE_SIZE BUFFER_SIZE
#endif

#else\/ /

#undef TABLE_SIZE /

#define TABLE_SIZE 100

#endif

int table[TABLE_SIZE]; y «
Programming in Modern C++ Partha Pratim Das ToL1? "4

o Notice how the entire structure of #if,
#elif and #else chained directives ends with
#endif

® The behavior of #ifdef and #ifndef can also
be achieved by using the special operators
defined and !defined (not defined) respec-
tively in any #if or #elif directive:

#if defined ARRAY_SIZE
#define TABLE_SIZE ARRAY_SIZE
#elif !defined BUFFER_SIZE
#define TABLE_SIZE 128

|

4 4

il C Preprocessor (CPP):

o The #if, #else and #elif (else if) directives serve
to specify some condition to be met in order for
the portion of code they surround to be compiled.
The condition that follows #if or #elif can only
evaluate constant expressions, including macro ex-
pressions. For example:

#if TABLE_SIZE>200
#undef TABLE_SIZE
#define TABLE_SIZE 200

#elif TABLE_SIZE<S50

o Notice how the entire structure of #if,
#elif and #else chained directives ends with
#endif

® The behavior of #ifdef and #ifndef can also
be achieved by using the special operators
defined and !defined (not defined) respec-
tively in any #if or #elif directive:

#if defined ARRAY_SIZE
Fdefine TABLE_SIZE ARRAY_SIZE
Eglif !defined BUFFER_SIZE
#define TABLE_SIZE 128

L]

H’H Conditional Inclusions: #ifdef, #ifndef, #if, #endif, #else & #e :_

#undef TABLE_SIZE #else
#define TABLE_SIZE 50 #define TABLE_SIZE BUFFER_SIZE
#endif

#else

#undef TABLE_SIZE

#define TABLE_SIZE 100

#endif

int table[TABLE_SIZE]; &
Programming in Moder C++ Partha Pratim Das ToL17 “‘

You can also use else and elseif. So, let us say you said table sizes if table size is greater than
200. Here it is not ifdef it is if. So, when | say if it is more like a normal if, that is if
TABLE_SIZE is not defined, this will fail. If TABLE_SIZE is defined, and its value is greater

than 200, then this will succeed, then what it will do it will undef. So, you are what you are
doing, you are reducing the TABLE_SIZE.

Else, it is called elseif as in else, and again, you want to do if combined together into a macro
directive elseif you check a check for greater than 200 now you are checking for less than 50. If
it is then you undefine and make it 50. So, greater than if it is greater than 200 you are making it
200 if it is less than 50 you are making it 50 else. So, in a chain of if elseif elseif else if the last

one has to be else, else you just undefine and define a fresh value 100.

So, if TABLE_SIZE is not defined at all it will fall to the else. If it is defined between anything
between 50 and 200 it will fall into 100 and then you use the TABLE_SIZE. So, you can make
any this kind of logic then and make use that there is another form of ifdef also which is used by
the defined macro. So, | say #if defined ARRAY _SIZE which is which will become truly if array
size defined. And then you are saying that table sizes array size similar elseif not defined
BUFFER_SIZE.

So, actually more than when you want to do this if elseif chain this defined and not define are
useful otherwise if you are just doing one check then you can always use if def or if endif. These
are very, very important directives to make your code build as you want it to work.

(Refer Slide Time: 16:09)

Pl C Preprocessor (CPP): Typical Use-Cases

uﬂ Conditional Inclusions: #ifdef, #ifndef, #if, #endif, # ‘f

o Commenting a large chunk of code: We often need to comment a large piece of code. Doing that witifis
C/C++-style comment is a challenge unless the Editor provides some handy support. So we can use:
115_2 // "0" is taken as false and the codes till the #endif are excluded
Code lines to comment
#endif
o Selective debugging of code: We often need to put a lot of code the purpose of debugging which we &
do not want when the code is built for release with optimization. This can be managed by a _DEBUG flag
#ifdef _DEBUG
Mgging like print messages’}
#endif
Then we build the code for debugging as:

$ g++ -g -D _DEBUG file_1.cpp, file_2.cpp, ..., file_n.cpp
And we build th&ode Tor release as (-U _DEBUG may be skipped if there is no built-in definition):

$ g++ -U _DEBUG file_1.cpp, file_2.cpp, ..., file_n.cpp
o Controlling code from build command line: Suppose our project has support for 32-bit as well as
64-bit (default) and only one has to be chosen. So we can build for 32-bit using a flag _BITS32
$ g++ -D _BITS32 file_1.cpp, file_2.cpp, ..., file n.cpp
And code as:
#ifndef _BITS32
Code for 64-bit
felse
Code for 32-bit
fendif ;,l
Programming in Modern C++ Partha Pratim Das ToL18

So, what are some of the typical use ifdef or if is a good way to comment out big chunks of code
instead of doing // // like that, you can just say if 0, O is false if 0 and then endif that whole code

is got commented. You may want to do a selective inclusion you say #ifdef underscore debug.
Now, during compilation from the command line, if you define debug, then it will include the
debugging code in the build if you do not include the debug, it will not include that it will be
really spilled.

So, that is what we are showing here. And if by default debug is defined, then you can also
undefined debug you can control the build command line in this way by defining the code with
ifdef or with if endif. Just try this out so that along with the programming, you also become

comfortable in terms of handling bigger and bigger code.

(Refer Slide Time: 17:25)

Y C Preprocessor (CPP):
Eﬂ Source File Inclusion: #include

@ When the preprocessor finds an #include directive it replaces it by the entire content of the specified

header or file. There are two ways to use #include:
#include <header> \/
#include "file"
® In the first case, a header is specified between angle-brackets <>. This is used to include headers
provided by the implementation, such as the headers that compose the standard library (iostream,
string, ...). Whether the headers are actually files or exist in some other form is
implementation-defined, but in any case they shall be properly included with this directive.

The syntax used in the second #include uses quotes, and includes a file. The file is searched for in an
implementation-defined manner, which generally includes the current path. In the case that the file is
not found, the compiler interprets the directive as a header inclusion, just as if the quotes ("") were
replaced by angle-brackets (<>)

We can include a file by -include file option from the command line. So
—_—

using namespace std; // #include <iostream> skipped for illustration

int main() {
cout << "Hello World" << endl;
return 0;

}
would still compile fine with:

$ g++ "Hello World.cpp" -include iostream 2
Programming in Moder G-+ Partha Pratim Das oL 4

Source file inclusion you already know and | have already explained why there are two types of
headers. So, that explanation is here. So, what does the CPP do is in place of the #include it will
replace that entire file and #include you will not be able to see you can also actually include a
header from the command line by using - include and file name. So, you have not given iostream
here, but from the build you can do this try this out good fun.

(Refer Slide Time: 18:11)

Fal C Preprocessor (CPP):

-
ﬁ Source File Inclusion: #include Guard A’ﬁ}f\

o Inclusions of header files may lead to the problems of Multiple Inclusion and / or Circular Inclusion

® An #include guard, sometimes called a macro guard, header guard or file guard, is a particular
construct used to avoid the problem of double inclusion when dealing with the include directive

o Multiple Inclusion: Consider the following files:

Without Guard _ With Guard

// File "grandparent.h" i /1 File

truct foo { int member; }; [#ifndef CR ARENTAH /, efined first time
e Fdefine GRANDPARENT_HV// Defined™or the first time
// File "parent.h" struct foo { int member; }; &

#include "grandparent.h” P#endif /+ GRANDPARENT H +/

#include "grandparent.h" gifndef PARE‘IT_H/
#include "parent.h" #define el
#include "grandparent.h"
// Expanded "child.c": WRONG #endif /+ PARENTH */
// Duplicate definition r?

// File "child.c" } /1 File *parent 1,

struct foo { int member; };

// File "child.c" \/
struct foo { int member; };

#include "grandparent.h"
#include "parent.h"

struct foo { int member; }; 4
Programming in Modern C++ Partha Pratim Das Torzo

This is an interesting hack that you must know which is called macro guard or header guard or
file guard include guard like that. The issue is supposed you have multiple header files like one is
grandparent.h which has defined a structure you have another parent.h which included
grandparent.h. Now, then you are writing so, there are two headers, then you are writing a source
file and in the source file, you have included you do not know whether you have to go to parent

or grandparent you have included both of them included both of them.

Now, what will happen this grandparent will include the structure then you come to include
parent, include parent will again include grandparent. So, it will again include the structure. So
the structure will come one after the other twice. And to C or C++ this is an error, this
redefinition of a structure by the same name. So, your code will not compile. There is nothing

wrong in the code.

But all that you need is if since you are including several header files and header files mutually
include each other all that you need to ensure is if a header file is already included in your
source, then it should not be included again. That is include only once and you can do that very
easily by this macros that we have seen, what you do is say the grandparent.h, you define a
symbol GRANDPARENT_H.

So, you say ifndef GRANDPARENT _H define and if and within that you put the code this is
your actual code. Similarly, you have done that in the PARENT.H. Now, what will happen when

you include this, this is not defined, this symbol is still not defined. So, this will get defined as it
get defined, this gets included at this point the surrogates included. And now you go to parent.h

try to include parent.h this is not included this is not defined it is not happened yet.

So, this gets defined. So, this goes to include grandparent.h. Now, grandparent.h has already set
GRANDPARENT_H symbol as defined. So, ifndef will fail now, because it is defined. So, it is
ifndef is not going to succeed, which means, though yet including it here, the inclusion control

will jump to the end of this file and nothing will get included that is all the guard works.

So, you check if it is not defined, define it, put the code and so that next time, if it gets included
through some other header files or even by the programmer in the source file a second time by
mistake, the actual inclusion will not happen. So, this is a very very useful so, every header you
write, you must have your include guard put in that header to make sure that everything is

included only once.

(Refer Slide Time: 21:56)

Y C Preprocessor (CPP):

EH Source File Inclusion: #include Guard

o Circular Inclusion: Consider the following files:

Without Guard With Guard
0 Class Flight: Needs the info of service provider #include<iostrean> // File main.h

0 Class Service: Needs the info of flights it offers #include<vector>
using namespace std;

#include<iostream> // File main.h
#include<vector>
using namespace std;

i File Service.h 9% o ce

e
#define __FLIGHT_H

class Ser 4 5 " " ile Fli
class Fligh ?Servuet i psarvs fo . oD #include "main.h’ // File Flight.h

#include "Service.h"
File main.cpp 2

class Service;
class Flight { Services m_pServ; /* ... */ };
#endif // __FLIGHT_H
T S #incl i File main.cpp
0 Class Flight and Class Service has cross-references #incl
O Hence, circular inclusion of header files lead to infinite | #i5c1

loop during compilation

4
Programming in Modem C+++ Partha Pratim Das Toa &

W C Preprocessor (CPP):

Lt

Li Source File Inclusion: #include Guard

o Circular Inclusion: Consider the following files: L
Without Guard With Guard
0 Class Flight: Needs the info of service provider #includeciostrean> // File main.h
0 Class Service: Needs the info of flights it offers #includecvector>
#include<iostream> // File main.h l:s¥ng. ?amespace .,“d;

#include<vector>
using namespace std;

‘///yx/isrhh

#include "main.h" File Flight.h ArmmA il a—
#include "Service.h" \/\///. jjhj' #ifndef __FLIGHTH
class Service; :{lef;nz “FLIGH;'H // File Flight.h

. . G include "main.h" ile Flight.
Slasé l'?lght‘{ Servces :_pSFe‘[z"v’,”‘{‘: “I;I; +); #include "Service.h"

class Service;

class Flight { Services m_pServ; /* ... ¥/ };
#endif // __FLIGHT_H
#include "mair File main.cpp
0 Class Flight and Class Service has cross-references
O Hence, circular inclusion of header files lead to infinite

loop during compilation

«
Programming in Mode C++ Partha Pratim Das o121 “‘

C Preprocessor (CPP):
Source File Inclusion: #include Guard

o Circular Inclusion: Consider the following files:

Without Guard With Guard
0 Class Flight: Needs the info of service provider #include<iostream> // File main.h
0 Class Service: Needs the info of flights it offers #include<vector>
#include<iostream> // File main.h ?s?ng Ammaspacy td;
#include<vector> : : 5 e 5 'E L)
56105 Damespace oU; o Sarcah #include "main File Service.h
#include "main.h" /| File Flight.h alina;af __FIV.I(V}H'i‘;HVV \

#include "Si " T
include "Service sdefine —FLTOAT &

class Service;
y . : #include "main.h" // File Flight.h
ilass Flight { Services m_pServ; /* ... %/ }; #inclnde "Service.h”

File main.cpp s Seriicas
class Fli icet m pServ; /* ... #/ };
#endif // __FLIGHT_H]
= 2 p g #inclu i File main.cpp
O Class Flight and Class Service has cross-references #i Service \/

O Hence, circular inclusion of header files lead to infinite | & i light v
loop during compilation {

«
Programming in Moder C++ Partha Pratim Das ToL21 *‘

So, this is just a just a little different example, this is called circular inclusion. There is a main.h
in blue, which has this to be included in main. There is a file service.h which includes main,
Flight.h, class flight, service. There is a Flight.h, which includes main Service.h for our
declaration of class service class flight, so, what is that is a flight they are service. So, a service
needs to know the flight, flight needs to know the service.

So, the header of flight includes the service header of service includes the fight. Now, naturally,
when you write the main, you will include both of them because they are across references. So,

what will happen when you write this the service.h, service.h is here. So, you get in here you try

to include Flight.h. So, you come include this code, you try to include Service.h, you go back try

to include Flight.h come back try to include Service.h indefinite circular inclusions.

So, this is these are common pitfalls to have that is what is the that is what is experiencing. So, if
you put the guard, then what will happen you have Service.h so, you will include service.h that is
you are including this so, it will include Flight.h. So, we will have class Flight class Service class
Service forward declaration which is incomplete type and then the complete declaration of class
Flight this is done.

Now, when you try to include Flight.h you already will get this symbol as defined and you will
do nothing. So, very simply by one inclusion principle you have been able to break this circular
chain and the possibilities of such circularity at all happening in your code. So, this include guard

is strong.

(Refer Slide Time: 24:50)

r

s C Preprocessor {ERR):

e
uﬂ Line control: #line and Error directive #error ‘ﬁfﬁ’

® When we compile a program and some error happens during the compiling process, the compiler shows

an error message with references to the name of the file where the error happened and a line number, |88
s0 it is easier to find the code generating the error. g
#1ine directive allows us to control both things, the line numbers within the code files as well as the fil s
name that we want that appears when an error takes place. Its format is: ®

#line number "filename" 5
Where number is the new line number that will be assigned to the next code line. The line numbers of
successive lines will be increased one by one from this point on.

"filename" is an optional parameter that allows to redefine the file name that will be shown. For
example:

#line 20 "assigning variable"

int a?;

This code will generate an error that will be shown as error in file "assigning variable", line 20
#error directive aborts the compilation process when it is found, generating a compilation error that
can be specified as its parameter:

#ifndef __cplusplus
#error A C++ compiler is required!
#endif

This example aborts the compilation process if the macro name _cplusplus is not defined (this macro

name is defined by default in all C++ compilers). «
Programming in Moder C++ Partha Pratim Das Tnz o

Now, there are several others these are less frequently used by programmers one is at any point
you can print the line number in your original file because by putting the #line directive, you can
also print an error message during this by putting the #error directive and so on. So, you can just
try them out | am not.

(Refer Slide Time: 25:24)

Fal C Preprocessor (CPP):

L"J Pragma directive: #pragma

o This directive is used to specify diverse options to the compiler. These options are specific for the
platform and the compiler you use. Consult the manual or the reference of your compiler for more
information on the possible parameters that you can define with #pragna

o [f the compiler does not support a specific argument for #pragnma, it is ignored - no syntax error is
generated

® Many compilers, including GCC, supports #pragma{once Which can be used as #include guard. So
#ifndef __FLIGHT_H
f#define __FLIGHT_H
#include "main.h" // File Flight.h
#include "Service.h"
class Service;
class Flight { Service* m_pServ; /+ ... #/ };
#endif // __FLIGHT_H

can also be written as:
f#pragma once
——p *Pragu
#include "main.h" // File Flight.h
#include "Service.h"
class Service;
class Flight { Service* m_pServ; /* ... #/ };

This is cleaner, but may have portability issue across machines and compilers

«
Programming in Modern C++ Partha Pratim Das 0123 ’4

There is another directive which you will find in the code if you it is called #pragma. #pragma is
actually not does not have any specific meaning it has been given so that any compiler vendor
who is writing the compiler can define #pragma with some subsequent parameter or name
whatever you say. Now, those are implementation defined that is this will not in general hold for

all CPP processes, but for that particular.

And several times compilers want to do that, because they may want to start directing their code
inclusion for example, they may want to control they may have multiple libraries compiled with
multiple optimizations and they may want to control which library will be actually included and
so on so forth. So, pragma once is, is one which is commonly used by many compiler vendors in
place of include guard, that is whatever we achieve by doing this include guard if you just say

pragma once it does that, it will internally make sure that you cannot include it once more.

I will still not advise you to use this because it is it looks cleaner, it is easier to do, | am sure, but
the portability is not guaranteed. So, your code might work on your compiler on a different one,
it will it may not work it may fail. So, but know that this is available, when you are in a

structured company you will possibly.

(Refer Slide Time: 27:13)

Pl C Preprocessor (CPP):

Lﬂ_{ Predefined Macro Names

o The following macro names are always defined (they begin and end with two underscore characters, _) o
[Macro [Value |

—LINE_ Integer value representing the current line in the source code file being

compiled N

~FIIE= A string literal containing the presumed name of the source file being

compiled

DATE A string literal in the form “Mmm dd yyyy" containing the date in which

the compilation process began

_TIME— A string literal in the form “hh:mm:ss” containing the time at which the

compilation process began

_cplusplus An integer value. All C++ compilers have this constant defined to some

value. Its value depends on the version of the standard supported by the

compiler:

¢ 199711L: ISO C++ 1998/2003

 201103L: ISO C++ 2011

Non conforming compilers define this constant as some value at most

five digits long. Note that many compilers are not fully conforming and

thus will have this constant defined as neither of the values above

STDC.HOSTED_ | 1 if the impl ation is a hosted impl ation (with all standard

headers available) 0 otherwise %
Tor24 ‘J

Programming in Moder C++ Partha Pratim Das

el C Preprocessor (CPP):

EH Predefined Macro Names

o The following macros are optionally defined, generally depending on whether a feature is available: o

[Macro [Value |

STDE.. In C: if defined to 1, the implementation conforms
to the C standard.

In C++4: Implementation defined
STDC.VERSION InC: w
© 199401L: ISO C 1990, Ammendment 1
¢ 199901L: ISO C 1999

¢ 201112L: ISO C 2011

In C++: Implementation defined

_STDC.MB_MIGHT_NEQ-WC_ 1 if multibyte encoding might give a character a
different value in character literals
_STDC.ISO_10646_ A value in the form yyyymmL, specifying the date

of the Unicode standard followed by the encoding
of wchar_t characters
_STDCPP_STRICT_POINTERSAFETY_ | 1 if the implementation has strict pointer safety
(see get_pointer_safety)

_STDCPP_THREADS_- 1 if the program can have more than one thread
® Macros marked in blue are frequently used %
Programming in Modem C++ Partha Pratim Das 0125 ’4

Then there are some names which are predefined in the macros like the start in this these are the
names that you have one is a line which tells you the particular line where you are in. One is the
file which tells you what is the name of the translation unit that is being compiled, one is the
current date and the time and in C++, you also have an __, C++ macro define which tells you the

version of the C++ language.

Now, this is these four-line file date time are very important to give different kinds of messages
for example, if you are trying to write some error message in your code, and you may have a

very similar type of message object construction failed something like that at multiple places in

the code. So, when you get the error how do you know where did it come from? Like very
simply, when you are we are using the compiler we when you have an error or a warning we get

in this file on this line this is there.

Now how do you generate that in this file and on this line, so we can do that by using this macro
names. So, treat it as a string. And if you put that in your code, it will simply expand while it is
compiling, it will simply expand to the current translation unit name so that you can give very
source contextual messages using the file and line macro names, date and time or for if you want,

when it happened and so on compiler gives that as well.

Some of the other macro names involve versioning of C versioning different version numbers,
how they are available and so on so forth. Not frequently used, but versioning of C and C++ is

important because you will need to know what particular version you are using.

(Refer Slide Time: 29:44)

ﬁé} C Preprocessor (CPP): Standard Macro Examples

o Consider:

// standard macro nazgs
#include <iostream>
using namespace std; /£

int main() /

{ / / T w
cout << "This is the line number " << __LINE__; .
cout << " of file " << __FILE__ <« ".\n"; \/
cout << "Its comp1latiﬁ'@aﬁ << __DATE__; \/
cout << " at " << __TIME__ << ".\n";
cout << "The compiler gives a __cplusplus value of " << __cplusplus;
return 0; N ———

}

o The output is:

This is the line numberl of file Macros.cﬁ/\/
Its compilation began Sep 13 2021 at 11:30:07.
The compiler gives a __cplusplus value of 201402

—

o Note that _LINE_, _FILE_, _DATE_, and _TIME_ important for details in error reporting

o
Programming in Modern C++ Partha Pratim Das T

So, this is an example where | am showing that how does these things work? So, this is the line
number 7 of macro.c. 1, 2, 3, 4, 5, 6 this is 7. So, this is this 7, it was macro.c is the name of the
file that I used is the line number you got. And this is a date time | had done this, and it tells us
C++ value is this, which tells me what is the version of C++ compiler that has been used to build
this.

(Refer Slide Time: 30:31)

gﬁsj Tutorial Summary

o Understood the differences and relationships between source and header files

o Understood how CPP can be harnessed to manage code during build

C preprocessor gives you lot of handle and lot of information about how you manage your code
and how you make your projects really flexible. Mind you it does not have anything to do with
your actual language codes or that it is just organizing it, it is just doing inclusions it is giving
you flexible ways to comment out code, it is giving you efficient ways to correctly include

headers it is giving you ways to manage the whole code scenario and make a build.

So, thank you very much for your attention do raise questions on this particularly during the
interactive sessions that will follow. | would love that if you ask questions also from this tutorial
because the tutorial is important the reason, | am doing this is just knowing the language will not

get you anywhere.

You finally need to be highly employable. And employability depends on practicing. So,
tutorials we are building to those aspects of supporting the hands on. So, do practice that I will
come back in the next tutorial discussing about that after the CPP what happens, how to build the
what is the total build pipeline that you do. Thank you very much for your attention, see you.

