
Programming in Modern C++

Professor. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 08

Stack and Common Data Structures/ Containers

Welcome to programming in modern C++. We are in week 1 and we are going to discuss module

5.

(Refer Slide Time: 00:36)

In the last module, we have seen some of the common algorithms being available as a part of the

C++ standard library and we have also seen how to use sorting and searching particularly to

great benefit.

(Refer Slide Time: 00:55)

Now, as you all would know that in programming algorithm what comes closely with the

algorithm are data structures, that is what we say that algorithm and data structure together form

the foundation for problem solving. So, as some common algorithms are available, in this

module, we will try to we will take a look at what are the common data structures that are also

available as a part of the C++ standard library.

We will use stack as our vehicle to understand that and see the difference between a stack written

by the user in C and a stack provided by the C++ standard library and then see what are the other

data structures that are also available in C++ standard library.

(Refer Slide Time: 01:47)

So, this is our outline, which you will see on the left all the time.

(Refer Slide Time: 01:54)

So, first let us look at it stack in C. So, before I get into that, just for completeness, let me

quickly go over the concept of stack. Stack as we know is a container which maintains the data

element in a last in first out order called that LIFO that is the element that is added last to the

collection will be removed first. And we conceptualize it as if it is a vertical structure stack of

books the one who put on the top is the first one you have to remove that is it.

So, create a for creating a stack we need to decide on these things we need to decide on the data

type of every element whether it is an in stack of integers stack of double stack of strings, stack

of user defined structures and so on. We have to define a structure a container structure to

maintain the stack. Theoretically a stack is infinite, but in reality, it cannot be so you will have a

maximum size also associated with the stack.

So, you would be familiar with stack being implemented with array stack being implemented as

list or stack being implemented as some other DQ structure and so on. Now, we also need to

declare a top variable which is the marker of the topmost element, so that if I want to add an

element, it goes on top of that, if I want to remove the element, the last in element which will be

first out I need to move the top in the other direction that is the purpose of top.

And the whole functionality of stack the data structure is defined in terms of four operations as

we know push that is adding an element, pop that is removing an element, top that is what is the

current topmost element if you want to check that several algorithms will need that and the

fourth is to say whether the data structure at all of the stack at all has any element or not that is

is-empty.

With these four functions, we have a total conceptual model for a stack, the last in first out. Now

in C if you are writing a stack, then you know that if you change the data type of the element,

then you have to re-implement the stack change the code that is the stack code for an integer and

stack code for double elements would be different. And the changes needed in the structure

which subsequently changes all the function code so the entire implementation has to be redone,

retested all that.

And unlike sin, tan square root these kinds of functions in C standard library, C standard library

has not provided with readymade stack for the simple reason that if the data type changes, the

whole implementation has to be different. So, you have seen in qsort or in bsearch, how

complicated it was to work with the algorithm without actually knowing the type of the data,

here, you will have to do it for all these functions and so on very complicated. So, the designers

decided not to provide any readymade stack in the C standard library.

(Refer Slide Time: 05:39)

Now, we all know this is just a quick recap of what you know, we all know that stack is a very

important data structure, because it is very common to solve a whole number of problems. For

example, you can use a stack to reverse a string, all that you need to do put the elements one after

the other in the stack, and then you just take them out one after the other, push, push, push, push,

push, push pop, pop, pop, pop will reverse the string, very simple last in first out reverses.

We can evaluate postfix expressions for example, here, I have an expression this where the

postfix is 123 start plus 4 minus. Now I think you know postfix notation, if you do not, please

read it up. Actually, stack can be used to convert an infix notation like this to the postfix notation

also. This conversion itself can be done using a stack. But here what we are focusing at is the

evaluation of it.

So, if the expression is given in postfix, then how do we evaluate take a stack, if you keep on

scanning the input from left to right, if you have a value, put it in the stack. So, you put 1 a

second value, put it in the stack push, third value push, then you get an operator, the moment you

get an operator, you know what is the arity of the operator, that is how many operands we

literally need. So, you take out those many elements from the stack one after the other.

So, as you have got star, which is multiplication, which is binary, you take out 3, you take out 2

and do that operation. As you do that operation, you will get 6 put it back. So, 2, 3 is gone 6 now

comes here, then you have a plus. So, again you do the same thing you take out plus as binary

take out two elements, 6 1, do the 6 plus 1, 7, that goes in then you get 4. So, you push it in, then

you get minus which is a binary minus here. So, you take out 4 takeout, 7, do 7 minus 4, get 3

put it in, you are at the end of the input.

So, your process is over what remains in the top of the stack, it should contain actually only one

value. If everything is correct, that is your evaluation result, you can check it out. If you look into

this expression, there is the highest precedence for 2 times 3 is 6, then these have equal

precedence, but left associativity of, 6 plus 1 is 7 and 7 minus 4 is 3, we have got the correct

result. So, stack has a wide application in terms of these kinds of expression evaluation and as I

said it can be used to convert an infix to postfix also.

It can be used to identify palindromes. Palindromes are which read the same from both sides like

Malayalam is a palindrome you read it from left to right you read it from right to left it reads the

same. So, this can be used this detection can be used by stack you can as I said convert infix to

postfix you can do depth first search so many different things post order traversal all of these

things require stack highly useful.

(Refer Slide Time: 09:30)

So, let us try to recapitulate writing a stack in C. So, this is the structure I define where I have

use an array as a container and I use an array index variable top as a marker. So, each one of

these functions are global. The stack functions are global, because in C all functions are global.

So, I need to pass the stack as a parameter to each one of these. So, each one of them takes a

pointer to the stack.

Push in additionally, will need the element that is to be pushed to the stack of characters. So, it

takes a character, everything else does not need another element. So, here you check for whether

your top is equal to the initial value. Here you provide the current top value here you increment

the top, get the next empty location in the array and put that element there. Here, you

decremented the top 2 logically remove the element.

For simplicity, where what here we have used the protocol that pop just pops, it does not return

the value that it gets that it has. So, to get that value you should first do top and then do to pop to

remove it. So, that is it. That is a simple way of doing it. So, now what I will have to do, I will

have to declare a stack and also initialize it with the value of the marker, which shows it is

empty. Now, since I have used an array, so the index starts from 0.

So, I say that the index which is invalid empty index is minus 1, one less than that. So, this is the

initialization that I need to do, then I have an array. Now I am trying to array of characters, I am

trying to reverse that string. So, I keep on taking character one by one, keep on pushing them in

the stack that I have, I am using that particular stack. And once I am done then I keep on finding

the top and popping it top pop (it top pop) it.

So, I am taking out in the reverse order till the stack gets empty. So, using these four functions, I

can easily do this kind of programming, which I am sure most of you have done already. Now,

let us see.

(Refer Slide Time: 12:24)

So, another example postfix evaluation, I will not go through the details, but I can just highlight

the stack creation per definition part of is, is the same again I have to provide that and then for

doing this evaluation, I have to check if something is a digit, because then I have to push it or if

it is an operator, then I have to take out the top two and operate. So, if it is a digit I push

otherwise, it will have to be an operator because that is only two things that are available in a

postfix expression.

So, I take out the top two elements one after the other. And I already know what the operator is

which is in ch. So, I find do a case of possible operators and whichever it matches, I will take the

two operands op1 and op2 that I have got operate them according to the operator and the result I

put back to the stack. I keep on doing this till I come to the end of the postfix expression and

things going correct at that time, I will have only one element left which is the result in the stack

which I take out as top.

Postfix expression evaluation very smoothly done. So, stack, this kind of programming is very,

very common. So, if we now step ahead and look at what happens in C++.

(Refer Slide Time: 14:08)

In C++, the standard library provides a separate header, a separate component called stack. And

the interesting part is that is a stack of any type as you want, again uses that magic of templates,

meta programming, we will come to that later on.

(Refer Slide Time: 14:31)

So, let us look at on the left is your C code. So, all these are scripted here all that you wrote for

the stack function stack structure has to be given which is given in say a hidden stack dot h that

you have written. And then, you have to define and initialize and then do this algorithm to

reverse.

In contrast, in C++ all that you need to do is to this header, it gives you the entire stack, correct

one. And when you want to create all that, you do is, you remember this tile was used in vector

also we did vector int. This is that template style where you say that the stack is written assuming

that the data type could be anything, it is a variable. And now you are saying that assume that the

data type is char.

So, compiler will take that and create the set of codes that are required for a stack of chars and

compile them. So, you have your readymade step, through writing just this couple of characters.

And once that has been done, rest of the code works exactly in the same way. So, you, you have

a lot of advantage now, because a lot of code that you had to write in terms of stack.h, is not

required, there is no code that needs to be written here.

The you needed a separate initialization, which if you forget, or do erroneously, everything will

fall apart. There is no initialization required, in this case, the whole cluttered interface of stack

functions which require every time the stack pointer to be pointed to the stack to be passed are

not required, you are just calling it as, as functions of that particular stack object it is a clean

interface.

And here you have to write it for every type you have to write separately tested, it is quite, not

only laborious, but it is error prone. Here, there is just only one code which is well tested and rest

of it, the automatic generator is doing. So, it is available in the library very less amount of work.

So, that is the advantage of having data structures as a part of your library, which C++ strongly

provides.

(Refer Slide Time: 17:17)

So, this is just for your, completeness, this is the postfix evaluation coordinates are written in

C++, which is exactly same as the code that you wrote in C except for the definition of the stack.

And this particular component from where the stack codes are coming, everything else is the

same. And it is just a matter of a couple of minutes in which you can easily write such code.

(Refer Slide Time: 17:51)

Now, having said that, you understand that stack is a data structure and in generality C++ or I

should more specifically say C++ standard library calls the data structures as containers, because,

what is a data structure? Data structure is, is basically a way to keep the data keep a collection of

data and then a certain protocol of operations that you can do on it these two together forms a

data structure.

Stack also maintains data array also maintains data queue also maintains data, everybody every

data structure, think of it has to store certain amount of data. And the different in terms of the

operations that you stand as a LIFO, queue as a FIFO array as a random access and so on, so

forth.

(Refer Slide Time: 18:46)

So, C++ prefer to call them as containers. So, there are in C++ standard library, there are several

components for different containers, they are readymade. And the most important point to be

noted, which is what we will keep on learning all through this course. So, that even we can write

similar libraries in future if we need to, is the fact that every container works like a data type.

Every container works like a data type. And that is the beauty of the whole thing.

And we will slowly understand that. There can be the containers can have elements of varied

type, including user defined types and are defined in that appropriate way. So, in C++, these

containers are called holder objects that can contain the collection of other objects or its

elements. As I said, it is implemented using class template you will learn that later on, but just

consider that it is a kind of imagination.

As you write the template of the code, the basic structure of the code without having to write,

without using the knowledge of the element type that is involved, you take the element type as if

as a variable. And then when it is used, the element type is known, the compiler generates a code

for that element type, and compiles it. So, that is the basic. So, it manages, of course, it has to

manage the storage space, because it is a container and it provides functions to access them,

which makes it a data structure a collection to store data plus the operations like push pop top

and empty makes something a stack.

Similarly, so the functions to access them will be provided. It also supports iterators, I briefly

mentioned in earlier module iterators are nothing but, generalized for loops. So, it can you can

provide on your data structure, if you can provide a range, then you can go from one end to the

other end of the range doing something, you can go in the forward direction, you can go in the

reverse direction.

Now, having structured in this way, some of the byproducts or design advantages that you get is

several containers have member functions in common. For example, in general, let us think of if

you have a data structure, what are the common things you will always have? First of all, there

will be a way to create it, and there will be a way to destroy it. Of course, that has to be there.

That is true for everybody. In most cases, there will be a way to add an element, there will be a

way to remove an element.

And in many, there could be a way to find an element, and so on, so forth. So, there are a lot of

member functionalities, which are common or are shared. And C++ standard library makes use

of that. So, once you understand the basic philosophy, common philosophy of this data

structures, you learn all the data structures together, you do not have to remember everything that

is that is the beauty. And we will see that more.

Now some of the containers are known as container adapters. Because they are not new

containers, there is some container and they just been adapted to behave differently, giving us a

different set of functions. For example, let us say if I use implement a stack using an array, then

the basic container is the array. But I do not want to see that as an array, I want to see it as a

stack. If I see it as an array, I will do random access. But I do not want to do that.

I want to look at it as a stack that which gives me push pop is-empty and top. So, I am adapting

the original container array with a set of functions, which make it behave like a stack. So, it is

not a fundamentally different whereas if I talk about a linked list, it is a fundamentally different

container than an array.

Because it does not have random access. But it has the ability to random insert random delete. If

I am talking about a tree, it is a fundamentally different container. But when I am talking about

array and stack or say list and stack, stack is not a different container, it is an adaption of existing

convenient container.

The similar thing is for the queue or for the priority queue which some of you may know as a

heap, it is also called the heap data structure. The heap sort is based on that and so on. So,

containers are not therefore are not full container classes. They use some underlying container

and provide a specific interface relying on the object of one of the container classes. So, stack is

one kind of interface maybe on an array.

Queue is another kind of interface, maybe on an array, or stack is one kind of interface on the list

queue is another kind of interface on the list, but the underlying container is a full container. And

these are just adapters and these adapters are very important for writing several good algorithms.

(Refer Slide Time: 24:58)

So, do not get shocked by looking at this list, obviously, on the on day one, nobody expects you

to remember this, but you have to with us get accustomed to this set of data structures because

they are available in the C++ standard library. So, you do not have to do anything just instantiate

and you are ready to go. And these data structures are designed in a way so that most of the

common problems that you have to solve using data structures are available here as readymade.

So, if we quickly take a look forget about those which are marked as C++ 11. We will talk about

them when you come to the modern part of it. We have already seen what is a vector, it is an

array with a lot more of power we have a list which is bi-directional list, doubly linked list what

we call. So, it can be expanded and contracted at both ends and works in that way. We have a

dequeue which is Double Ended queue, which means that you can add and remove elements at

both ends.

What is stack is where you add remove elements at one end queue where you add element at one

end remove element from the other end. And dequeue is a generalization where you can add and

remove elements from both ends. So, you have all of that ready, then you have adapters like

stack queue priority queue with the expected member functions that are their exact member

function name you have to know but the beauty is the function name to add is same between

stack and the queue and the priority queue.

So, once you learn one, you know the rest. Then you have a set of containers which are

associative. What does the associative mean in array stack queue priority queue and so on. You

are you find out an element based on either its position or its priority, or its order of arrival, and

so on, not by the value of the element. You never need to know the value of the element to do

these operations. To do push pop, top empty, you are not concerned with the value of the element

that you are dealing with.

All that you are dealing with is the order of the arrival and the order of departure of the elements

to the data structure. There are several containers where you need to do the other way you are

concerned about what is the value for example, you are creating a set. Now set does not have any

ordering as you know it is a structure mathematically it is a collection where the elements are

unique and are have no specific order.

So, here these kinds of containers are called associative. There is a map, map is nothing but the

name value pair you have a key and a value the keys are assumed to be unique. So, that given the

value of the key you can find out what is the value of the associated with that particular key

which is very required. This can be for example map can be used to represent a graph where you

have associations between two nodes by an age which gives you the graph.

So, set and map, map is also commonly you will commonly know as a hash operation, but here it

is a little different. Hash directly is not available. So, these are associated with where the value is

the important part in keeping in the way we will keep it in the data structure. So, set and map are

the fundamental ones, which in an underlying way uses binary search tree structure. The

underlying structure is a binary search tree.

Now binary search tree per se is not given as a component but the set and map they use binary

search tree internally and obviously need the elements to be comparable. Now, so which is a

little bit maybe for a set, it may be a little bit uncomfortable because you want to make a set of

anything. And if you have to build a binary search tree based on the elements of a set, you have

to make them comparable and which may not be a little unnatural.

So, there are some naturality in that. It also has multi-set and multi-map, multi-set is a set where

duplication is allowed multi-map is one where duplication in terms of the key value is allowed.

And this need to be compatible is done away with in C++ where you have unordered versions of

them, but as I said, we will not talk about this right now.

Refer Slide Time: 30:37)

So, we have overall given a view of the availability of data structures in C++ as a standard

library using stack as a primary regular example, and this will be very useful for you to develop

C++ programs very easily. Thank you so much for your attention and we will meet in the next

module.

