

Programming in Modern C++

Professor Parthe Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 60

Closing Comments

Welcome to Programming in Modern C++ we are in week 12. The last week and we are

going to discuss the module 60, the last module of the course.

(Refer Slide Time: 00:39)

In the previous module 59, we concluded about the concurrency support, we understand

different synchronization issues in multi threaded programs through examples, and left a lot

of stuff for your self study. To get a better grasp on the concurrency support in C++.

(Refer Slide Time: 01:01)

In this module, we conclude. So, we take a quick review of the course, try to highlight some

of the key take backs and a little bit of what is next, what can you do next.

(Refer Slide Time: 01:16)

So, this is the outline. So, first, let us just talk about what we have done in the course, what

we could afford to do, the Course Summary. We have 59 modules that we have gone through.

So, and this is the broad classification of topics, very top level classification of topics to go

through in terms of learning first learning C++, then learning Modern C++. So, the first 45

modules spanning 9 weeks was dedicated to learning C++ and C++98 or C++03.

 Starting from the fact that programming in C++ is fun. Writing equivalent C++ programs

corresponding to C programs, then we looked at the procedural extensions C++ as a better C.

Spent 2 weeks on Object oriented design and programming with classes in C++ which is the

meet of the initial discussion, then extended for inheritance generalization specialization of

object modeling, which leads to different kinds of polymorphism, static binding, dynamic

binding, multiple inheritance and so on.

Other features came in, in terms of cast operators to manage the data types in the proper

context. And as we saw later on, in Modern C++, the importance of cast operators are

somewhat going down because you try to manage them more automatically. Then exceptions

are very important for understanding the errors and handling, we have done a comparison

between C and C++ styles.

Then templates, which are program generators both at a function level as well as at a class

level and key for generic programming streams for management of IO and STL. The generic

programming library in C++, particularly C++ containers, is what we have discussed of

course, up to this point, we are focused on C++98, C++03 only.

And then the remaining 15 modules or 14 modules excluding the current one, we are focused

on the modern C++, which is C++11, 14.we have not gone in beyond that, because that kind

of already C++11 itself is too huge and is empowering enough for a programmer to learn the

new things on their own.

So, in terms of modern C++11 we have discussed variety of general features, type related

features, initializers, const expression and so on. But very importantly, very importantly, the

rvalue semantics and the move semantics, this is one of the key idea, which makes lot of

other features possible, without that so like in C++03. If you have not understood

constructors, you will not be able to proceed you have understood now.

Similarly, in C++11 onwards if you have not understood rvalue semantics and the move

semantics, you will not be able to proceed at all. It is not only about, you know optimizing

copy, but it goes into, spreads its tentacles. So, to say in so many different features that

becomes very critical.

Lambda functions and, or that is functions without name anonymous functions and closure

objects are very handy and very useful again and has a wide use, then we have looked at

multiple of class features, most of them are convenience features, I would say, they are not,

part breaking features like rvalue semantics or closure object and things like that, but, they

really make your programming easier in C++11 onwards.

We have looked at a large number of non class type and template features like variadic

template, template variable and so on so, forth. Very specific and utilitarian is the resource

management. So, this is another area where you must focus very well resource management

was there earlier in C++03 also, there was a auto_ptr. But, that had lot of problems and it was

not very useful in that way. So, people used to write their own smart pointers, different

companies had their own smart pointers, all these have now been standardized in terms of just

3 smart pointers unique pointer for exclusive ownership, shared pointer for shared ownership

and weak pointers to solve the circularity problem.

So, this is something again another very, very important aspect that you must master and

finally, as we have just concluded on the concurrency support, which takes you to a different

dimension in terms of using C++11 and onwards.

So, most of this discussion is around C++11. We have made some references to C++14

which is a key extension but not a very large one. And very occasionally, we have made

references to C++17 or C++20.

(Refer Slide Time: 07:26)

We also have provided 12 tutorials on 5 broad topics, which I consider that to be a good

programmer in C++, Modern C++, it is just not enough to know the language or

programming you need to be a master of how to build the programs, what is the preprocessor

doing, what is the build pipeline, what is the make utility, how to make libraries, static

libraries, dynamic libraries and so on. So, we have discussed these in 4 tutorials.

Mixing of C and C++ code is a major industry issue. So, we have discussed about what are

the issues they are in and what are the resolutions with project example. Core off using C++

in general and C++11 onwards in particular is to be able to design user defined data types like

built in types, C++03 could do that, but C++11 makes it even more compact even more like

the built in types and so, on.

So, this set of 3 tutorials focus on designing, discussing the design of variety of UDTs like

fraction UDT, int fixed size int UDT, polynomial UDT mixing of those and so on, which

should give you a good idea, they may not be very directly utilitarian, but this will give you a

very good idea about how to make types in C++ and use them effectively.

Certainly, 1 tutorial is focused again on talking at depth about using rvalue and move

semantics because that is as I said, it is very very important. Compatibility of the 2 languages

which is an outcome of the mixing experience, you can say, compatibility of C and C++ has a

lot of issues. So, those are discussed in 2 tutorials. So, these are more like engineering aspects

of the language.

At this point, I will also note that, I keep on working with the course all the time. So, even

after recording certain ideas come to my mind or I read up something, interesting example

and so on. So, I even after recording and keep on I am putting those in the presentation slides

both in the modules as well as in the tutorial to remind you that this is not a there is no

disconnect, those slides have marked as post recording at the top.

So that, you do not get confused, but I will always suggest that besides referring to the video

do refer to the presentation files alongside because you will get, in some cases, you will get

more clarification more examples, maybe minor added features or use models are discussed

in this way.

(Refer Slide Time: 10:38)

Now, beyond the tutorial, 12 tutorials that I have already recorded, I planed to record some

more. The first 2 have been requests have come from the live sessions only embedded C++

and CMAKE, which I did not get time till now to record, but I will record and make them

available. Then a set of tutorials on resource management because that I think is very, very

important. And several of the engineering issues like C++ coding style, how to write good

code, and what is, what does this coding style mean, and what kind of coding style industry

typically recommends, and so on so forth.

And obviously tutorials on C++ processes and tools. So, you know, it just not making a

program, you have to make a software. So, it is a task that goes on and on and on for days,

months, involving the customer fixing bugs, doing enhancement, redeployment, so on so

forth. So, design development, build, debugging, test, source code and version management,

bug tracking, lots of things need to be done.

I mean, of course, these are not specific to C++, but you need to know, what are those

processes, and what are the tools that are involved. In terms of doing those processes of that

only for build, I, we have covered in tutorial 1, 2, 4, the build part, but not the other tool. So,

I, intend to record a couple of tutorials around that so that you can use them, where as you as

you get into the practice.

And on the design side, there is a concept called design patterns in a certain types of designs

are repeatedly used. And so I like to have 1 or 2 tutorials on that. And any suggestions I get

further, I will certainly our, it may take a little bit of time for me to record, but I will certainly

record the corresponding tutorial and make available to you even beyond your course

completion and examination, so keep a watch.

(Refer Slide Time: 12:49)

Now, that was in terms of what we have done overall, if we look into the features, and this

specifically, and what I am meaning by features is the Modern C++ because that is the

evolving part, the C++03, 98 is pretty stabilized. So, all features of that are already covered in

in the in the course as well as available at multiple places.

But what has happened beyond that, starting from C++11 to 20 as it goes on, particularly

C++11 features.

(Refer Slide Time: 13:26)

So, here I have given you a map of the major C++11 features and where all you can expect

the module where you can expect to find it, that just a cross reference kind of so that it makes

it easier for you to, if you are trying to look for information, where is null pointer then you do

not have to keep on searching you can just go null pointer, it is in module 48, open module

48. You will get that, open that video, you will get that.

(Refer Slide Time: 13:57)

That list continues naturally rvalue reference move semantics sub-multiple, Lambda

expressions sub-multiple, conferences support has multiple modules. And then there are some

more other features which I covered.

(Refer Slide Time: 14:13)

So, this was in terms of the core language features, I had talked of several library headers also

I mean, if you open module 46, when we started with the modern part you will see that we

had put this list as what we intend to cover.

So, of these obviously we have not been able to cover everything but those library

components which we have covered I have mentioned, their names, I mean module names

where there. Important omissions are array, which is a fixed size array, which is a container,

new container, forward_list, which is another new container.

These we did not get time and this should have been and tuple, tuple also, these 3 should have

been covered, but I did not get time to do that maybe, we will do a tutorial on containers

particularly and also talk about them. So, this is about but most of the other major these are

also containers, but they are very similar to map and set that you have the ordered map and

ordered set that you have. But for the rest we have shown what is the, what are the modules

where you can find this.

(Refer Slide Time: 15:33)

Looking in terms, I mean this into a level of different glasses through major library features

like smart pointers, where we can find the major smart pointers or say the initializer list or the

thread library discussion of the std::function, or std::bind, and so on that mappings are given

here. So, that will make it easier for you to locate again.

(Refer Slide Time: 16:01)

There are new several new algorithms added, some of these we have discussed but not

exhaustively and in the algorithms part you will find that.

(Refer Slide Time: 16:12)

Coming to C++14 There are few major features in the language and most of them, we have

covered and most of them are not independent like this one, this one, this one, this one, this

one, this one, these are not independent features, these are improvements on C++11 features

therefore, while discussing the C++11 feature itself, we have included the discussion of the

C++14 features.

So, the corresponding modules you will find, only these are there are small features like in

fact attribute also is an extension of a C++11 feature the binary literal, digit separator, very

minor features these are independent, but most of C++11 features have been given a glimpse

to.

(Refer Slide Time: 17:13)

In terms of the C++11 library features. The most important feature is certainly make_unique

which is used for unique_ptr which we have covered well and we have covered the std:: types

or the the other 2 have not been covered.

(Refer Slide Time: 17:36)

I have not listed beyond this, in terms of C++17 or C++20 features, because they are, they

would have taken a lot more time and you have to digest this itself which is big. The another

list which is incomplete, but I just wanted to sensitize you on is as we are looking at additions

to C++98, 03 from C++11 onwards, there are deprecations also, like we used to write string

as char*, in C++11 onwards you are not allowed to do that, you have to either write it as a

string literal has to be a const char* or auto.

You have auto_ptr is deprecated we have already told that, you have unique_ptr. The

increment operator for bool type is deprecated because it has no sense, because now it bool is

truly a type it is not a, an integer interpreted.

register keyword for storage specifier, I mean you can use it but it has no effect anymore.

Then we you have deprecation of C style cast conversion you have the application of other

forms of parameter binding like export and std::bind and std::functions to be used and so on.

So, not all of them, we have explicitly discussed those which we have I have mentioned the

modules, but it is very important to note that, if you get a warning from the compiler usually

on deprecated features you will get a warning, deprecated features does not mean that they

are not usable. But it means that this feature will disappear soon from the future standards

and should be avoided. But the deprecated feature will still be a part of the standard library

for backward compatibility reasons, but it is not at all advisable to use them.

So, compilers usually give errors or not errors, warnings on that, so make sure that you check

on those warnings and if you get such go back and check if you are using deprecated feature

then move on use the right feature.

(Refer Slide Time: 20:06)

So, this was kind of language wise, this is what we have been able to cover. So, I talk from

the perspective of the module, weekly structure tutorials and so on. And from the language

side and what is a mapping.

(Refer Slide Time: 20:22)

If we talk about key takeback, obviously, C++ is a multi paradigm language is what you have

lot more strongly learned procedural, it is a better C object oriented and generic. And if you

now, look back, the generic part is very, very heavily strengthened by C++11.

And reuse remains to be the key. So, macros also offered reuse but kind of, in today's time,

you will say that, well, it is very, very difficult to find a use case where you have to use a

macro. So, you probably are not using it, then you have library functions, function

overloading, static polymorphism, dynamic polymorphism, you have templates, you have

containers, algorithms.

 So, C++11, promotes safety and reuse to a great great extent, if you have understood that

learnt that internalize that, then that will be the greatest learning that you have. Naturally,

designing good datatype safe type is very, very important for C++. And while programming

in C++, you must keep an eye on efficiency because that is why the language exist. And from

one version to the other, language apparently is making becoming bigger or at least the

library is becoming bigger, but the efficiency is if not improving, at least is not degrading.

That is the core focus. Safety is obviously improving, I mean C++11 is lot more typesafe than

C++03 and so on so forth. Clarity, this is a major focus on the clarity that it should be easy to

read, intuitive and easy to work with.

So, the final take back is it is an evolving language, it is a live language. So, do not think that

your learning ends by doing this course, which has gone up to C++11 mostly, but keep

learning, keep moving with the standard C++03 to 11 to 14 to 17 to 20 and 23 is around the

corner, it will, next year it will be there. So, try to always learn what is there.

(Refer Slide Time: 22:51)

Over this course, in different modules, different places, I have given plethora of references,

those that can always be referred, but here is a 1 slide summary of important references. If

you have to be a master of C++, C++11, 14 onwards, you can rely on this, these references.

And these are typically, kind of private sites which give you a good idea about different

features.

But, I would say that, like when you when you learn literature, you say you read the great

authors, you read Shakespeare, you read Wordsworth, you read Milton, so on so forth, or

Salman Rushdie at a later point of time and so on.

Similarly, here, you must rely on the great authors, Scott Meyers, the creator Stroustrup’s,

Andrei Alexandrascu, Herb Sutter. Here, I have tried to organize them according to those

authors. These are, at least in my view, are the 4 great authors in the learning of C++ content

from various aspects.

So, their key works, I have listed here, then. These are also very famous author Josuttis,

Vandevoorde and so on. An excellent style guide is available from Google. And in the

O’Reilly, there is a nice C plus, modern C++ tutorial which talks about all these 4 dialects,

what they have added. It is about an 80 page book, not difficult, very, written in a very crisp

manner. And Changkun Ou has been kind to put this entire book in Creative Commons

license. So, in this link, you do not have to buy the book in this link, you can go and

download that book.

So, these are some of the important references, besides the ISO standard and so on. I did not

mention the standard here because you do not really learn, you can not really learn by reading

the standard.

So, for Stroustrup, also, I have not actually mentioned the book, the Bible book. But here I

am talking about practical references which a programmer as an engineer, the developer, will

need to look up and quickly get clarified on different aspects of the knowledge related to the

language and the programming and the usage.

(Refer Slide Time: 25:47)

Regarding your examination naturally watch the videos carefully revise the assignments and

solutions, because the final question paper is going to be exactly in the same line. Some will

be recalled questions from the module, some will be, recall questions with little modification

from the assignments and some will be new questions. Practice lots of lots of coding with

every feature, because that is the only way you can learn.

Design, try to design and implement complete data types, we have tutorials on that as well.

And very specifically, focus on well Resource Management, lambdas, simple multi threading,

and so on. These are some of the key things that you should not get challenged in the

examination.

Of course, given the entire course, there will not be a lot of questions on this, but there will be

some key questions on these areas as well.

(Refer Slide Time: 26:48)

Well, many of you ask what next, you know, that depends on what you want to do.

Obviously, learn the topics not covered, there will always be many there dialects, which we

have not covered as I said, and as I say that breath programming regularly code and

implement systems, the only way to keep going and keep growing.

Try to read lots of lots of programs by good coders from jet hubs and other sources. I would

advise that to learn C++ better and realize also learn Python and Java when you get time, it is

not good to be a one language developer never. Not on all not in terms of your job

opportunities, but in terms of your core technical skills all as such.

And then these are these are some of the, you know, future. Some of the subjects that are

related, which you will benefit from, of course algorithms and data structure I have not

written here because that was to be a prerequisite to doing this course. But object oriented

analysis and design NPTEL has a course on that as well.

Unified Modeling Language, which is mostly covered in that object oriented analysis and

design course, there are courses on software engineering, that you must, it is always very

important. Because if you can just write a program not many companies would be heavily

interested in you, they will be interested.

But if you know a little bit of software engineering how processes go how dynamics of

software creation work, they will be more interested. And the more they get interested, you

get a better package. That is the sole idea. And of course, to go forward, study the books and

references that I have just mentioned in the summary.

(Refer Slide Time: 28:54)

So, that is all that I had to share with you in these concluding remarks. So, the course on

modern C++ is concluded, but will continue to create tutorials and maybe additional material

for you and putting on the NPTEL site.

So, even in the future, you can come there and download and see those videos and make use

of the, I mean if you can make use of this knowledge and really get a good career path

forward. That would be the best reward for all of us who have worked so hard on this course.

All the very best, thank you very much for being with us in this course.

