Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture — 59
C++ and Beyond: Concurrency: Part 2

Welcome to programming in modern C++, we are in week 12. And | am going to discuss module
59.

(Refer Slide Time: 00:38)

r PR G QIO PO BN

@ Module Recap

o Introduced the notion of concurrent programming in C++11 using thread support

o Explored library support through std::thread and std::bind
Objectives &
Ouine o Exposed to the bugs in thread programming - race condition and data race

o Discussed examples of thread programs with bugs and their solution

Programming in Modern C-++ Partha Pratim Das M50.2

In the last module, I introduced the concept of concurrent programming in C++11 using the
thread support that has been provided in the C++11 standard library. So, this makes the multi
threaded programming which was earlier to be done by external third party libraries like the
POSIX library or the boost library, much easier to do and a lot more standardized. We have

explored the library support through std::thread, bind.

And we have seen that a naive coding offered sequential program into a multi threaded program
will lead to certain bugs. A major category of bugs falling in race condition and data race we

have seen, | discussed examples of trade programs with bugs and that solution.

(Refer Slide Time: 01:39)

r" PP ATl SO BN

i@ Module Objectives

o To understand synchronization issues in multi-thread programming in C-++

o To study various synchronization mechanisms through example
o To self-study the details of synchronization mechanisms:

o Mutex

o Lock

o Atomics

o Condition Variable

o Future and Promises

o Async

Programming in Modern C++ Partha Pratim Das M593

We will continue on that to give you some more glimpses of the issues in multi threaded
programming particularly the synchronization issues. And using the same example that we did in
the last module, we will show more synchronization mechanisms as examples. Since
concurrency support the threading support is a very, very large subject, we will not have time to

discuss each one of the important features of the library in detail.

So, what | have done?? | have prepared a set of slides at the end of this presentation under the
self-study banner. So, that you can study some details of specific synchronization mechanisms

yourself and also practice examples that are given at the end.

(Refer Slide Time: 02:40)

r’"‘" ‘ PPRPAHI SO BN
Lu Module Outline

Programming in Modern C++ Partha Pratim Das Ms9.4

This is the overall outline and we will continue from where we had left.

(Refer Slide Time: 02:51)

pPRPQTHI SO BN

Stroustrup, 2016
cy: Threads, isocpp

14), Scott Meyers Training Courses
curi C++, 2020

in C

y: Parts 1-3,

rency: Part

Threads &

Programming in Modern C++ Partha Pratim Das M59.5

Just a quick recap from the last module.

(Refer Slide Time: 02:52)

PPRP QTS OEBD

%‘] Threads

Jard: Threads, Stroustrup, 2016
- Concurrency: Threads, isocpp

11/14), Scott Meyers Training Courses
n C

eading Tutorials: Parts 1-

ocC

1 Multithreading - Part 1 : Three
® C++20 Concurrency: Parts 1-3, Gajend

0C ncurren art 1 §

Threads &

Programming in Modern C++ Partha Pratim Das M595

We showed that thread is a lightweight process and we have learned the basic trade operations
using the thread component of the standard library, that is creating a thread, passing parameters
to a thread directly or by std::bind, returning the result from a thread directly or by std::bind,
joining threads and so on. And we have also observed race condition and data race in the multi
threaded program.

(Refer Slide Time: 03:23)

pPRPQEL SO BY

E@] Race Condition and Data Race

Race Condition and Data{Race

Programming in Modern C+-+ Partha Pratim Das Ms97

Now, just again to recap that what is race condition or data race?

(Refer Slide Time: 03:29)

r" PPRPQHI SO BN

Lﬁ} Race Condition and Data Race

o We often talk about bugs in multi-threading:

o Race Condition
o Data Race
o Are they same?
o No, they are not
Races o They are not a subset of one another
o They are also neither the necessary, nor the sufficient condition for one another
o Race Condition: A race condition is a semantic error
o A race condition is a situation, in which the result of an operation depends on the
interleaving of certain individual operations
o Many race conditions can be caused by data races, but this is not necessary
o Data Race: A data race occurs when 2 instructions from different threads access the same
memory location without synchronization
o A data race is a situation, in which at least two threads access a shared variable at the
same time. At least one thread tries to modify the variable.
o The discovery of data race can be automated
o We tahe!ex(amples to illustrate both

Programming i

Partha Pratim Das

Ms9.8

These are kind of synchronization problems. So, they are very closely related though they are not

exactly the same thing. As you have seen a race condition is a semantic error it is a situation in

which the result of operation depends on the interleaving of certain individual operations which

may occur in indeterminate order in multiple threads.

And a data race particularly occurs on | mean the condition where the at least two instructions

are trying to come in from different threads or trying to access the same memory location

without synchronization. And at least one of them is trying to write that data race rises.

(Refer Slide Time: 04:16)

FPRPQEI OGN

E@ Example 1

o Let us write a simple program to compute:

=2870

ZU: 0% (0+1)x (2x20+1)
=

6
i=1

o Assuming that x*x is a heavy computation (fake it!) we developed a simple
multi-threaded program for the above:
o Spawn 20 threads
o Each thread computes square for a distinct value
o The accumulated result is available after the threads join

o We added random delay and repeated run support to setup scenarios for race conditions
to be observed. We observed that bugs exist
o We have also discussed two fixes — by mutex and by atomic which we will recap here

o We also discuss other solutions by lock, future, and async_
,_,_f“"

Programming in Modern C+-+ Partha Pratim Das M59.9

Now, we will continue with the same example which was to find the sum of squares of 1 to 20
and we had assumed that x multiplied by x is a heavy operation to simulate that we have also
modeled a random delay after the computation of this product in accumulating the results. And to
be able to repeat this, the thread bugs are kind of indeterminate onces. And they may show up in

1 run and they may not show up in 100 other runs.

So, to get to a bug which is particularly arising from the synchronization, we will typically need
to run the program several times. And therefore, we also created a setup where we could keep on
repeating the runs of the program and check whether we get the correct result. If we do not, then
we know that we have a bug. If we do not get an error, then we have a better confidence, but we
can never be sure just by this observation that there is no error.

So, we have what we have done is we have discussed two fixes for this problem, one using
mutex and the other using atomic. And we will use, we will show a couple of more here after and

of course, revise the earlier ones, revisit the earlier ones.

(Refer Slide Time: 05:53)

FPRPQEL SO

@ Example 1: Random Delay + Repeat

#include <iostream>

#include <vector>

#include <thread> thread, this_thread::sleep_for
#include <chrono> chrono: :milliseconds

#include <cstdlib> // rand()

using namespace std;

int accum = 0;
Races void square(int x) {
p=x+x; /
[int™delay = (int)((double)std::rand() / (double)(RAND_MAX)* 100);
std: :this_thread: :sleep_for(std::chrono: :milliseconds (dela;.‘));
accum += p; t
} —
int main() { int trial_count = 0;
do { ++trial_count;
if (0 == trial_count J 100)
cout << "trials = " << trial_count << endl;
accun = 0;
| vector<thread> ths;
’for (int i = 1; i <= 20; i++) { ths.push_back(thread(&square, i)); }
for (autok th : ths) { th.join(); } hresls
} while (accum == 2870); 77 T°292°2%. .20°2 = 2870: infinite loop!!!
cout << "trials = " << trial_count << " accum = " << accum << endl;

}

Programming in Modern C++ Partha Pratim Das M59.10

So, this is this was the version of the program, which we are trying to trying to synchronize. Here
is you can see that there is a function square which takes and compute the square and
accumulates and here is where we put a arbitrary amount of random delay to kind of simulate
that the product operation is a heavy operation. And here is where we do multiple runs, this is the

actual body of the program where we create an array of default area of threads.

And then put different threads with the associated square function, but different parameters to
put them in the vector. So, that as soon as | put them they start working and they will get variable
amount of delay amongst them, and then it will accumulate and this accumulation will be
completed when all threads have joined. And we check whether that related result is equal to the
as desired. And we have seen on several occasions that it fails, but synchronisation can help

solve that problem.

(Refer Slide Time: 07:14)

(R B R BN A B

ﬁ Example 1: Solution by Mutex

Race Condition and Data Race: Example 1:
Solution by Mutex

Programming in Modern C++ Partha Pratim Das Ms9.11

So, the first solution which we have seen is by doing a mutex.

(Refer Slide Time: 07:18)

PPRPQETS O GUN

ﬁ Example 1: Solution by Mutex

o A mutex (mutual exlusion) allows us to encapsulate blocks of code that should only be
executed in one thread at a time. Keeping the main function the same:
int accum = 0;

mutex accum_mutex; g,
o

void square(int x) { (P A/

int temp = x * x; /
huson by Mutex v accum_mutex.lock(); gets the lock accum_mutex
accum += temp;-‘L_,\
| accum_mutex.unlock(); rel the lock on accum_mutex
==

o We try running the program repeatedly again and the problem should now be fixed

o The first thread that calls lock() gets the lock

o During this time, all other threads that call lock(), will wait at that line for the mutex to be
unlocked. Creates a Critical Section

o It is important to introduce the variable temp, since we want the x * x calculations to be
outside the lock-unlock block, otherwise we would be hogging the lock while we are running
our heavy calculations

Programming in Modern C++ Partha Pratim Das M59.12

‘PP QEL 2O U

@ Example 1: Solution by Mutex

o A mutex (mutual exlusion) allows us to encapsulate blocks of code that should only be
executed in one thread at a time. Keeping the main function the same:

int accum = 0;
mutex accum_mutex;

void square(int x) {
int temp = x * Xx;]
accum_mutex.lock(); lock accum_mutex
accum += temp;
.accum_mutex. unlock(); lock accum_mutex
T
o We try running the program repeatedly again and the problem should now be fixed
o The first thread that calls lock() gets the lock
o During this time, all other threads that call lock(), will wait at that line for the mutex to be
unlocked. Creates a Critical Section
o |t is important to introduce the variable temp, since we want the x * x calculations to be
outside the lock-unlock block, otherwise we would be hogging the lock while we are running
our heavy calculations

Programming in Modern C-++ Partha Pratim Das M50.12

Mutex is like a gate. So, what it creates is what is known as a critical region. So, this is known as
a critical section or a critical region. So, what it does is when a thread reaches this point, and
assuming that no other thread has reached that point, then it will acquire that lock. So, it can
acquire that lock provided no other thread is currently acquired it. So, once it has acquired the
lock, it can proceed and perform this addition.

But once, one thread has acquired the lock, no other thread which has reached this point, will be
able to acquire the lock. They will have to wait at that point. So, they will be waiting at this point
there is no kill. The thread which was having the lock executes the unlock releases it, so that out

of the waiting threads, one thread will actually add the lock and will be able to proceed.

So, that simply means that even though square is running on multiple threads, this part of the
function square, which is computing the square and of course, it will, we will put that random
delay to make it a heavy task. We will be done in concurrent fashion all threads can do it at the
same time at different times and so on. Whereas, this part the critical section part will necessarily

be serialized.

That is at any point of time only one thread will be able to add the product of x into x to the
accumulator. So, this will ensure that the problem that we had seen earlier that the old value of

an accumulator is being read and being updated will not arise.

(Refer Slide Time: 09:15)

W FPRPQEL SO BN

Example 1: Solution by Mutex

P

#include <iostream>

#include <vector>

#include <thread> thread, this_thread::sleep_for

#include <mutex> mutex

#include <chrono> chrono: :milliseconds

#include <cstdlib> // rand()

using namespace std;

int accum = 0; t

mutex accum_mutex;

doon by Mt void square(int x) { 1

intp=x*x; t
int delay = (int)((double)std::rand() / (double)(RAND_MAX)#* 100);
std: :this_thread: :sleep_for(std::chrono: :milliseconds(delay));

accum_mutex.lock(); ts the lock accum_mutex
accum += p; mulate pr t
accum_mutex.unlock(); 1 the lock or

}
int main() {
vector<thread> ths; tor of t
for (int i = 1; i <= 20; i++) { ths.push_back(thread(&square, i)); }
for (autok th : ths) { th.join(); } t
cout << " accum = " << accum << endl; tf

Programming in Modern C++ Partha Pratim Das Ms9.13

And with that, we have seen the modified solution, the safe solution, whereby red | have shown
the changes that you make to the central thread program, of course, | have not shown the
reputation part because that's basically an experimental setup, but this is a program which will
work correctly.

(Refer Slide Time: 09:34)

PPN QEL SO TY

Eﬁ] Example 1: Solution by Lock

o A lock is an object that can hold a reference to a mutex and may unlock() the mutex during
th&Tock's destruction (such as when leaving block scope)
int accum = 0;
mutex accum_mutex; It ria l

void square(int x) {
int temp = x * X;

std::unique_lock<std::mutex>l A res and owns the lock on accum_mutex
il L
lck(gccgm_mupex); i
acTm_nutex. lock(); 7 ts the lock on accum_mutex
accum += temp; !
) unlock();#// rel the lock on accum_mutex
} I se the lock and ownership on accum_mutex

o Use of lock makes the coding and understanding simpler than using bare mutex
o std: :unique_lock has the similar resource ownership advantages as of std: :unique_ptr
o Particularly useful when we have multiple resources to mutually exclusively manage

Programming in Modern C++ Partha Pratim Das M59.15

L R R A e T

Example 1: Solution by Lock

o A lock is an object that can hold a reference to a mutex and may unlock() the mutex during
the lock's destruction (such as when leaving block scope)
int accum = 0;
mutex accum_mutex;

void square(int x) {
int temp = x * Xx;

std: :unique_lock<std: :mutex> res and owns the lock on accum_mutex
1ck(accum_mutex);
Haccum—suter-lackOn_ ts the lock accum_mutex
accum += temp;
_mutex.untoek(): 1 the lock on accum_mutex
} r the lock and rship on accum_mutex

o Use of lock makes the coding and understanding simpler than using bare mutex
o std: :unique_lock has the similar resource ownership advantages as of std: :unique_ptr
o Particularly useful when we have multiple resources to mutually exclusively manage

Programming in Modern C++ Partha Pratim Das M59.15

‘EPRLQEI PO

Example 1: Solution by Mutex

o A mutex (mutual exlusion) allows us to encapsulate blocks of code that should only be
executed in one thread at a time. Keeping the main function the same:
int accum = 0;
mutex accum_mutex;

void square(int x) {
int temp = x * Xx; |

. accum_mutex.lock(); ts the lock on accum_mutex
accum += temp;
accum_mutex.unlock(); r the lock on accum_mutex

}

o We try running the program repeatedly again and the problem should now be fixed

o The first thread that calls lock() gets the lock

o During this time, all other threads that call lock(), will wait at that line for the mutex to be
unlocked. Creates a Critical Section

o |t is important to introduce the variable temp, since we want the x * x calculations to be
outside the lock-unlock block, otherwise we would be hogging the lock while we are running
our heavy calculations

Programming in Moder C:++ Partha Pratim Das M59.12

Now, we will introduce a modification or a refinement of this mutex solution using something
what is known as a lock. Lock works in this way that again suppose you have a mutex variable
on which you could have done mutex.lock() mutex dot, I mean, mutex.lock() and mutex.unlock()

as you have been doing here.

But instead of doing that, what you do is you do this. That is you say std::unique_lock, which is
available in the mutex component and pass a template parameter mutex, then this is your lock
variable, and this is the mutex that you are locking. So, what you say is basically, a unique_lock
is a template function which takes an object of a certain type and locks it. Here, it is taking an

object of a mutex type.

And that object is the mutex that | have created, this acute mutex. And it locks it. The advantage
of doing this is so as you do that, you necessarily do not have this and you do not have this. But
what happens when such a lock goes to the end of its scope, this is the end of the scope, then it
automatically it is destructor of that object that is a structure of Ick will automatically get called.

The destructor will actually unlock the mutex object that you have locked.

So, you can see that the advantage here is you get the semantics of the automatic variables here
in terms of locking. So, you get the same critical section, but you do not have to parenthesize it.
Because you might just forget, if there are many at different places, you might just forget to
unlock a particular mutex when it is done. So, this relieves you of that. This will remind you of if
you recall, smart pointers, we had unique pointers for the same purpose where the unique pointer

was taking a raw pointer and taking ownership of it.

And when the unique pointer that goes out of scope, its destructor automatically destroys the
object pointed to by that pointer and disappears. So, exactly in the same way unit lock achieves a

resource management for the locks, which makes programming far more easier.

(Refer Slide Time: 12:28)

‘PP P QNI Lo B

E‘@ Example 1: Solution by Lock

#include <iostream>

#include <vector>

#include <thread> thread, this_thread::sleep_for
#include <mutex> nutex, unique_lock

#include <chrono> chrono: :milliseconds

#include <cstdlib> // rand()

using namespace std;

int accum = 0;

mutex accum_mutex;

void square(int x) {
intp=x#x;
int delay = (int)((double)std::rand() / (double)(RAND_MAX)* 100);
std: :this_thread::sleep_for(std::chrono: :milliseconds (delay));
std: :unique_lock<std::mutex> lck(accum_mutex); lock accum_mutex
accum += p;

}

int main() {
vector<thread> ths;
for (int i = 1; i <= 20; i++) { ths.push_back(thread(&square, i)); }
for (autok th : ths) { th.join(); }
cout << " accum = " << accum << endl;

Programming in Modern C++ Partha Pratim Das M59.16

So, using the lock, if we right now, then the program becomes actually much simpler, we will
still need to define the mutex variable, but it is just one line of unique lock that before the
accumulation of the product which solves the problem. So, this is the second way of doing this.

(Refer Slide Time: 12:49)

FPRPQELS SO BY

ﬁ Example 1: Solution by Atomic

Race Condition and Data Race: Example 1:
Solution by Atomic

Programming in Modern C++ Partha Pratim Das Ms9.17

You could make use of lock which is based on the, on the mutex.

(Refer Slide Time: 12:55)

PP QEL SO TY

ﬁ Example 1: Solution by Atomic

o With Mutex / Lock the problem gets fixed. The program does not produce a wrong result even
after 6000+ trials

Interestingly, C++11 offers even nicer abstractions to solve this problem. For instance, the
atomic container:

A
#include <atomic> v& 0 S

— \

atomic<int¥ accum(a); kes accum and initializes to 0

void square(int x) {
accum += X * X;
}
We do not need to introduce temp here, since x * x will be evaluated before handed off to
accum, so it will be outside the atomic event
o However, we will continue to show the solution using the temporary

Programming in Modern C+-+ Partha Pratim Das M59.18

‘PP QEI 2O TN

@ Example 1: Solution by Atomic

o With Mutex / Lock the problem gets fixed. The program does not produce a wrong result even
after 6000+ trials

o Interestingly, C++11 offers even nicer abstractions to solve this problem. For instance, the
atomic container:
#include <atomic>
atomic<int> accum(0); accum t z 0
void square(int/x%\{
7™\

accum(+=Y * x;
] = .__,_—-

o We do not need to introduce temp here, since x * x will be evaluated before handed off to
accum, so it will be outside the atomic event

o However, we will continue to show the solution using the temporary

Programming in Moder C++ Partha Pratim Das M59.18

The third solution is what we have seen in the last module also that you have a component
atomic by which any variable which needs to be updated in a critical section or needs to be
updated safely by multiple threads can be declared as automatic. So, | am, | am reexplaining that
so this is a component. And what | am saying is accumulate, accum is a variable of type int. So,

you are making it an atomic int initialized with value 0.

That is instead of doing int accum, which makes it a global, simple global variable, anybody can
change anytime, you make it an atomic in terms of. The advantage is after that you just do
whatever you had been doing. What happens is when this part is happening, the threads are
allowed to go concurrently. But when you try to update acuum, the atomic behavior that is
defined in the library will make sure that threads are properly serialized.

And this update happens as an atomic operation that is when one thread is doing the update that
it has read the value of the accumulator and is adding the product to it and getting the final value.
During this time, no other thread will be able to do that. So, this atomicity is what is important

and which comes very handy in terms of simple synchronization problems.

(Refer Slide Time: 14:36)

L BN R

ﬁ Example 1: Solution by Lock

#include <iostream>

#include <vector>

#include <thread> thread, this_thread::sleep_for

#include <mutex> nutex, unique_lock

#include <chrono> chrono: :milliseconds

#include <cstdlib> // rand()

using namespace std;

int accum = 0;

mutex accum_mutex;

void square(int x) {
int p=x#*x;
int delay = (int)((double)std::rand() / (double) (RAND_MAX)* 100);
std::this_thread::sleep_for(std::chrono: :milliseconds(delay));
std: :unique_lock<std: :mutex> lck(accum_mutex); the lock accum_mutex
accum += p; m roduct

int main() {
vector<thread> ths;
for (int i = 1; i <= 20; i++) { ths.push_| back(thread(&square); }
for (autok th : ths) { th.join(); }
cout << " accum = " << accum << endl;

Programming in Modern C++ Partha Pratim Das M59.16

So, again with this, there is almost no change in your earlier unsafe program. All that you need is

replaced the global declaration with the declaration of atomic int for accum with initialization 0.

(Refer Slide Time: 14:55)

FPRPQEL SO BY

ﬁ Example 1: Solution by Future

.

Race Condition and Data Race: Example 1:
Solution by Future

Programming in Modern C+ Partha Pratim Das M59.20

We look at a new solution using what is known as future, future and promise.

(Refer Slide Time: 15:02)

PR QEL SO T

@ Example 1: Solution by Future

o Future, represented by std: : future, is a way to access the results of asynchronous operations
o Imagine if our main thread A wants to open a new thread B to perform some of our
expected tasks and retumn me a result. At this time, thread A may be busy with other things
and have no time to take into account the results of thread B. So we naturally hope to get
the result of thread B at a certain time
o Before the introduction of std: : future in C++11, the usual practice used to be:
o Create a thread A |
o start task B in thread A:
o send an event when it is ready, and l
o save the result in a global variable |
o The main function thread A is doing other things. When the result is needed, a thread is
called to wait for the function to get the result of the execution
o The std: : futurs provided by C+-+11 simplifies this process and can be used to get the
results of asynchronous tasks. Naturally, we can easily imagine it as a simple means of thread
synchronization, namely the barrier
o We engage Example 1 to illustrate the way Future works

Programming in Modern C++ Partha Pratim Das Ms0.21

So, future is kind of a way to access the result of an asynchronous operation. You know, threads
are doing things on their own. So, there is no as such, they are not synchronized, so they are
doing things, someone is computing, someone else need to use that. So, if you have to access the
result of an asynchronous operation, let us say, thread A has a task to do, which it has given to

thread B. And meanwhile, thread A is doing something else.

So, thread B is to perform that task and return the result. Now, thread A is not waiting for the
result, like join thread B, it is not waiting like that, but it is doing its own work. And it will like
to get the result in its own sweet time after B has computed it. So, what you typically do, in this
case is | mean before without using future, you create the thread, create the task B in thread A, so
spawn that thread. Send an event when the, when it is ready, and save the result in a global

variable.

Again, bad programming using global variables, but nothing can be done. And then the thread A
is doing other things. And when the result need it, it is called to wait function so that if thread B
has finished, then A gets that result. Now that whole functionality is now compactly given by
future, future and promise they go hand in hand.

(Refer Slide Time: 16:53)

rPRsqEs e

i@ Example 1: Solution by Future

#include <iostream>
#include <vector>
#include <thread> thread, this_thread::sleep_for
#include <future> future
#include <chrono> chrono: :milliseconds
#include <cstdlib> // rand()
using namespace std;
int accum = 0;//defise
void square(futurecint>k fut)) {
int X =tursget{)T 77 get
intp=x+*x;
int delay = (int)((double)std::rand() / (double) (RAND_MAX)* 100);
std::this_thread::sleep_: ior(std :chrono: :milliseconds (delay));
accum += p;
}
int main() {
vector<promise<int>> vp; /+
for (int i =0; i < 20; 1**) {
vp.push_back(promise<int>(’i
vf.push_back(vp[i].get_future());
vt.push_back(thread(#square, ref(vf[il)));
vpli].set_value(i+1);

/ vector<future<int>> vf; /

for (autok t : vt) { t.join(); }
cout << " accum = " << accum << endl;

Hrograrming in Modem C:++ Partha Pratim Das

*/ vector<thread> vt;

pPRseEsto

i@ Example 1: Solution by Future

#include <iostream>
#include <vector>
#include <thread> thread, this_thread::sleep_for
#include <future> future
#include <chrono> chrono: :milliseconds
#include <cstdlib> // rand()
using namespace std;
int accum = 0;
void square(f UEhre(l"At)y ut)
int x = fut.get()
int p=%X¥1x; /

L Y

int delay = (int)((double)std::rand() / (double)(RAND_MAX)* 100);
std::this_thread: sleep for(std :chrono: :milliseconds(delay));
accum += p;
}
int main() {
vector<promise<int>> vp; /
for (int i = 0; i < 20; i++) {
vp.push_back(promise<int>());
vt.push_back(vp[i] .get_future()); /
vt.push_| back(thread(&square ref(l‘fx]
vpli].set valuﬂ*ﬂ 1
b
for (autok t : vt) { t.join(); }
cout << " accum = " << accum << endl;

*/ vector<future<int>> vf; /+

Srogramming i Modem Ci-+ Partha Pratim Das

*/ vector<thread> vt;

So, what it does, it basically initially creates a promise that | will give you, I will give you this in

future. Then from the promise you get a future, you get a handle to a future. And that future is

what you pass to your task, you pass that future to the task. And in the task, you can, you can

obviously do a get to get the actual value that you have given the future to do.

Then your task, then you create this threat with that particular task that you want to do the

square, with the future that you have given it. And after creating that, then in the promise, you set

the value that you want to give to the future. So, you promise that you will give something to the

future. And according to that future is ready to take up the work. So, here as soon as you create

that, the thread will start, but it will not be able to go forward.

Because the promised value has not been given yet. So, when you give that value in the in the
promise by setting it, then it gets that and executes. And then threads go as they are. And they
join at the end. And you have the result. Since this this future and promise will make sure that
this synchronization is happening. It is it is somewhat complicated to think about, but that is a

another nice way.

(Refer Slide Time: 18:41)

pPRPQEd PO UN

&ﬂ Example 1: Solution by Async

o An even higher level of abstraction that avoids the use of promise and future directly, talking in
terms of tasks is async given in std: :future. Consider the following example:

#include <iostream>
#include <future> future
using namespace std;

int square(int x) {\return x * %; }
int main() { X =
auto a = async(&square, 10); future<int>
int v=agetQ; to fulfil the promise
cout << "The thread returned " << v << endl;
}
o The async construct uses an object pair called a promise and a future
o The former has made a promise to eventually provide a value
o The future is linked to the promise and can at any time try to retrieve the value by get ()
o |f the promise has not been fulfilled yet, it will simply wait until the value is ready

o The async hides most of this for us, except that it returns in this case a future<int> object

Programming in Modern C++ Partha Pratim Das M59.24

The fifth way to solve this problem is actually to package future and promise into something of a
higher abstraction called async. What async does is it you have seen that you need a pair of
promise and future to solve the problem. So, the question is if we always need that pair, why not
define a high level object which makes the pair itself. So, you do not have to write all of these?

Yes, the async will do all that pair.

So, I have the task. | do not pass any future tweet, | pass whatever | was passing and | return the
value whatever | was returning. And | just instead of creating thread, | just created async object
with the task and the parameter. This will return a future by itself. Because it is embodied, this

will create promise internally future set that value do all that.

And then it will wait for the promise to be fulfilled, that is get. So, when you get that value, you

have the actual value. So, that is that is the basic async operation, which is much simpler than

using future and promise.

(Refer Slide Time: 20:09)

pPRPQEI SO

ﬁ Example 1: Solution by Async

#include <iostream>

#include <vector>

#include <thread> thread, this_thread::sleep_for

#include <future> future

#include <chrono> chrono: :milliseconds

#include <cstdlib> // rand()

using namespace std;

int square(int x) {
intp=x#*x;
int delay = (1nt)((double)std :rand() / (double) (RAND_MAX)#* 100);
std::this_thread::sleep_for(std::chrono: :milliseconds(delay));
return p;

}

int main() {
int accum = 0;
vector<futu e<lrt>> fts
for (it 1= 1; 1 <= 20y i++) { fts.push_b
for (autok ft : fts) { accum += ft.get();
cout << " accum = " << accum << endl;

}

o Works fine. Does not produce a wrong result even after 30000+ trials

ck(async (&square, 1)); }

Programming in Modern C++ Partha Pratim Das

PP PQHI SO TN

iﬁ;‘ Example 1: Solution by Async

#include <iostream>

#include <vector>

#include <thread> thread, this_thread::sleep_for

#include <future> future

#include <chrono> chrono: :milliseconds

#include <cstdlib> // rand()

using namespace std;

int square(int x) {
intp=x*x;
int delay = (int)((double)std::rand() / (double)(RAND_MAX)* 100);
std::this_thread::sleep_for(std::chrono: :milliseconds(delay));
return p;

int main() {
int accum = 0;
vector<future<int>> fts t
for (int i = 1; i <= 20; i++) { fts.push_back(as\mc\nsquare i)); }
for (autok ft : fts) { accum += ft.g
cout < " accum = ™R acculr <<endl; /)

/

o Works fine. Does not produce a wrong result even after 30000+ trials

Programming in Modern C++ Partha Pratim Das

So, if we have to use this, now we have an accumulator again. And we have a, | have put the

accumulator as a part of main instead of global, because my task function square, no more uses

the accumulator. That task function is not adding it to the accumulator, because that is the

synchronizable part. That is not the concurrent part. So, | create a vector of futures. And | do
push back that, what did | say?

That async will return a future object. So, if | do async, the task function and the parameter it
will give me a future object, so | put it to the vector. So, | have so many 20 future objects, and
for these 20 future objects, each one of them have to complete. And as they complete, | add them
and that | do sequential. This addition, | do sequentially here by this range for.

So, | do ft, that that future object, | do a get, and | wait, if it has not finished, and as soon as | get
| add it to the accumulator. So, this happens one after the other. So, this part is serialized as |

wanted, and | get a direct result.

(Refer Slide Time: 21:38)

PP QHIl SO BN

&’] Synchronization

Synchronization

Programming in Modern C++ Partha Pratim Das M59.26

So, | have shown you multiple different ways to address the basic synchronization problem of

race condition, data races.

(Refer Slide Time: 21:48)

FPR P QYISO BY

E@ Synchronization Errors: Symptoms and Causes

%N
Y N
o Conflicting o one thread begins an operation on shared memory, is suspended, and leaves
access to that memory region incompletely transformed
shared o asecond thread is activated and accesses the shared memory in the corrupted
memory state, causing errors in its operation and potentially errors in the operation

of the suspended thread when it resumes

o Race o correct operation depends on the order of completion of two or more inde-
Conditions pendent activities
o the order of completion is not deterministic

SECEEN ¢ Deadlock ® two or more tasks each own resources needed by the other preventing either
one from running so neither ever completes and never releases its resource

o Starvation o a high priority thread dominates CPU resources, preventing lower priority
threads from running often enough or at all

o Priority o a low priority task holds a resource needed by a higher priority task, blocking
inversion it from running

Programming in Modern C++ Partha Pratim Das Ms0.27

So, just to give you a broader idea, let me take you through the wide variety of synchronization
errors that can happen. Of course, this course is on C++ and modern C++. So, | cannot really
teach you on each one of these cases, why it happens, and so on, you will have to read it up

elsewhere.

But what these, the features that have already discussed mutex, lock, future and promise, atomic,
async one or more of these can be used to solve each one of these situations like conflicting
access to a shared memory, shared memory is there and one is accessing that, the other thread is
accessing that. And, before one thread has completed the access and put it into a valid state, it is
time gets over and the second thread tries to access into gets an invalid value for the shared

variable and so on conflicting access, race condition you have already seen.

Deadlock is very simple, that if we are there are two or more resources that two or more threads
need to access at the same time, then it is quite possible that one thread has locked one resource
and the other thread has locked the other resource. So, none of the threads get the second
resource to actually proceed into the critical region. And therefore both of them keep infinitely

waiting.

Starvation is a, is a related problem that it may be, as I said that when you unlock which thread
gets it next is indeterminable. Like some one of the waiting threads will get it. Now in our

example, since we had a given number of threads, and one single iteration, eventually in

whatever order they get, each one of them will get the lock at some point of time and we would

be able to complete.

But in a general situation where threads may be getting generated that may be, they may be
locking new and new, making new and new locks or trying to make new and new locks. So,
when a thread unlocks, it is indeterminable as to which of the waiting threads will get that. So, it
is possible that some thread has been waiting waiting waiting several times the opportunity has
come for that thread to get the lock but it has eventually not got the lock. So, that is starvation.
There maybe priority inversion between higher priority threads and lower priority threads. Lower
priority thread getting the lock before the high priority threads and so on.

(Refer Slide Time: 24:31)

‘PPR L QAHI O

E‘@ Synchronization

o A program may need multiple threads to share some data
o |f access is not controlled to be sequential, then shared data may become corrupted
o One thread accesses the data, begins to modify the data, and then is put to sleep because
its time slice has expired. The problem arises when the data is in an incomplete state of
modification.
o Another thread awakes and accesses the data, that is only partially modified. The result is
very likely to be corrupt data.
o The process of making access serial is called serialization or synchronization
o Synchronization may be achieved in various ways including:
o Mutex (self-study)
o Lock (self-study)
o Atomics (self-study)
o Condition Variable (self-study)
o Future and Promises (self-study)
o Async (self-study)

Programming in Modern C++ Partha Pratim Das M59.28

So, variety of such synchronization errors are possible. And it is, this happens because in a in a
multi threaded program you need to share data. So, certain accesses which are need to be which
need to be controlled to be sequential must be done so through synchronization. This process of
making access serial is called serialization or synchronization. And there are several ways of

doing that.

And we have except for condition variable which is particularly used for deadlock prevention, all
other five we have seen examples of. And at the end | have given self-study module for you to go
through each one of them and with sample programs attached with them.

(Refer Slide Time: 25:25)

PP ATl SO EBY

E@ Synchronization: thread local

Synchronization: thread local

Sources:

® Thr e, isocpp.org

. ers, cppreference

(] cal modernescpp, 2016

® What does the thread_local mean in C++117, stackoverflow

Programming in Modern C++ Partha Pratim Das

Another very interesting concept that, that exists in terms of multi threading is the concept of a
thread specific lifetime.

(Refer Slide Time: 25:36)

pPRsQEste

o Y

\f

[ﬁ] thread local

o thread_local is a storage class specifier. Thread local data will be created for each thread as needed
® thread_local data exclusively belongs to the thread and behaves like static data
® Created at its first use and lifetime bound to the lifetime of the thread (lifetime in Module 13, 23, & 35)

Thread Local

#include <iostream> /w
=

#include <thread>
) -
\ 7
A

#include <vector>
*/ g0;

Global
#include <iostream>
#include <thread>
#include <vector>

using nameSpade std;
ti=0

-

void f(int newval) { i = newval; } |

void g() { cout << i; } y

void threadfunc(int id) { e
£(id); ++i; /# A

}

using namespace std;

thread_local int i'= 0;

void f(int newval) { 1= newval; }
void g() { cout <« i; } -
void threadfunc(int id) {

£(id); ++i; /+ +/ g0;

~int main() {i=9;
vector<thread> th;
for(int i = 1; i < 4; ++i)
th.push_back(thread(threadf
for(autok t: th) t.join();
cout << i << endl;
}

2349, 3249, 4239, 4329, 2439

Programming in Modern C++

int main() { i =9;
vector<thread> th;
for(int i = 1; i < 4; ++i)
th.push_back(thread(threadfunc, i));
for(autok t: th) t.join();
cout << i << endl;

}

unc, 1));

3429

Partha Pratim Das

We have talked about object lifetime, automatic objects, which are on the stack based on the
lexical scope, they have lifetime. We have static objects, which have lifetime which is much
wider. We have global statics, which will have a lifetime from the from before the start of main

to after the end of main. We may have local statics in namespace or in function scope, which has

a lifetime from the point of creation to the end of the | mean beyond the end of the program and

SO on.

We have dynamic lifetime we choose our managers. Similarly, we add another lifetime here,
which is called thread _local. The thread is created and an execution is happening. So, naturally,
if a trade is created, an execution is happening, the thread has its own stack has to have otherwise
functions could not have been called. With one stack, you cannot have two threads running. So,

each thread has a stack of its own.

So, automatic will get managed there, the statics will get managed in a global context, because it
is common for all threads. But if | want that something which is, which has a lifetime as that on
the thread, but on access, which is as that of the global. So, it is like this, we can define a for
example, here ignore this comma. Suppose, if | have a global variable i, then this function f and

function g can communicate and function thread function can communicate by updating this i.

For example, this updates i, this writes to i, this reads i and so on. And this is being done using it
as a global. Now, if I do that, then any other thread which may be working with the same thread
function, its own it will also get affected because it is a global. So, that solution is to have thread
local before this. What it means that if it is thread local, then as long as you are in one thread,

this will look to you as if it is a global.

But if I have two threads, thread 1 and thread 2, then | have two instances of i, two different
ones. So, that the functions in thread 1 will share the thread_local of thread 1. The functions of
thread 2 will share the thread local of thread 2. So, that gives a nice advantage in terms of

programming in some cases.

(Refer Slide Time: 28:58)

FPRPQHI SO EBY

E@] Self-Study

Self-Study

Programming in Modern C++ Partha Pratim Das

Ms9.31

So, this is the short overview that I had for you.

(Refer Slide Time: 29:07)

L R T S R

%ﬂ} Synchronization: mutex

Synchronization: mutex

Sources:

® Mutual exclusion, isocpp.org
o std:mutex, cplusplus

® An Overview of the New C

C++11/14), Scott Meyers Training Courses

Programming in Modern C+-+ Partha Pratim Das

What | have now given is different slides | mean different sections for your self study.

(Refer Slide Time: 29:13)

P

L." mutex

o We have used mutex from <mutex> in the solution for Example 1
o A mutex is a primitive object used for controlling access in a multi-threaded system

std: :mutex m;
int sh;

m.lock();

sh+=1;
m.unlock();
o Only one thread at a time can be in the region of code between the lock() and the
unlock() (critical region)
o |f a second thread tries m.1ock() while a first thread is executing in that region, that second
thread is blocked until the first executes the m.unlock()
o There may give rise to serious problems like:
o What if a thread “forgets” to unlock()?
o What if a thread tries to lock() the same mutex twice?
o What if a thread waits a very long time before doing an unlock()?
o What if a thread needs to lock() two mutexes to do its job?
o What if ...

Programming in Modern C1-+ Partha Pratim Das M59.33

This is on mutex, which talks a little bit more about mutex.

(Refer Slide Time: 29:16)

o O
o In addition to lock(), a mutex has a try_lock() operation which can be used to try to get
into the critical region without the risk of getting blocked:
std::mutex m;
int sh;

if (m.try_lock()) {

sh+=1;

m.unlock();
else { /+ +/ }
o Use a recursive_mutex to acquire it more than once by a thread in a recursive or co-recursive
function

We can also set a duration (relative time) to try for a lock: o,
m.try_lock_for(std: :chrono: :seconds(10)) th

Or we may want to wait until a fixed point in time, a time_point:
m.try_lock_until(midnight) inight f
o A recursive_timed mutex is a recursive_mutex that can be timed

Programming in Modern C++ Partha Pratim Das Ms9.34

You have already seen the example use. And the specific features like besides lock and unlock it

asatry lock. So, learn what it is.

(Refer Slide Time: 29:24)

PP QHI SO EBY

Eﬁ] Synchronization: lock

Synchronization: lock

isocpp.org
k, cplusplus
iew of the New C C++11/14), Scott Meyers Training Courses
Programming in Modern C++ Partha Pratim Das M59.35

Then I have given more slides on the lock itself.

(Refer Slide Time: 29:27)

o We have used lock from <mutex> in the solution for Example 1

o A lock is an object that can hold a reference to a mutex and may unlock() the mutex during
the lock's destruction (such as when leaving block scope)

o A thread may use a lock to aid in managing mutex ownership in an exception safe manner

o That is, a lock implements Resource Acquisition Is Initialization (RAII) for mutual exclusion
(Recall RAIl in smart pointers). For example:

std: :mutex m;
int sh;

void £() {
std: :unique_lock<std: :mutex> 1ck(m); lock()

lock will be released even if this code throws an exception
sh+=1;
} unlock()
o Alock can be moved (the purpose of a lock is to represent local ownership of a non-local
resource), but not copied (which copy would own the resource/mutex?)

Programming in Modern C++ Partha Pratim Das M59.36

Which we have seen already how what that locks can be moved but they cannot be copied and so
on so forth.

(Refer Slide Time: 29:38)

o This straightforward picture of a lock is clouded by unique_lock having facilities to do just
about everything a mutex can, but safer and simpler

o For example, we can use a unique_lock to do try_lock:
std: :mutex m;
int sh;

void £() {
std: :unique_lock<std: :mutex> lck(m, std::defer_lock);
if (lck.try_lock()) {

sh+=1;

}

else { /* ma i th e */ }
} -
o Similarly, unique_lock supports try_lock for() and try_lock until()
o What you get from using a lock rather than the mutex directly is exception handling and
protection against forgetting to unlock()

Programming in Modern C++ Partha Pratim Das Ms9.37

Very specifically, how locks can be used.

(Refer Slide Time: 29:43)

ﬁ lock: Deadlock

o
B S S8

o What if we need two resources represented by two mutexes? The naive way is to acquire the
mutexes in order:
std: :mutex mi;
std: :mutex m2;
int shi;
int sh2

void £() {

std: :unique_lock<std: :mutex> 1cki(m1);
std: :unique_lock<std: :mutex> 1ck2(m2);

shi+=sh2;
}
This has the potentially deadly flaw that some other thread could try to acquire m1 and m2 in
the opposite order so that each had one of the locks needed to proceed and would wait forever
for the second (deadlock)
o With many locks in a system, that is a real danger

Programming in Moder C+-+ Partha Pratim Das Ms0.30

| mean what is the C++11 support mechanism to use locks in a way so that inherently deadlock

can be prevented.

(Refer Slide Time: 29:53)

ﬁ atomic
o We have used atomic from <atomic> in the solution for Example 1
o Each instantiation of the std: :atomic template defines an atomic type. If one thread writes
to an atomic object while another thread reads from it, the behavior is well-defined

o std::atomic is neither copyable nor movable
o Type aliases are provided for bool (std: :atomic_bool) and integral types like int, short, etc.

#include <iostream> std::cout
#include <atomic> std::atomic, std::atomic_flag, ATOMIC_FLAG_INIT
#include <thread> std::thread, std::this_thread::yield
#include <vector> std::vector
std: :atomic<bool> ready (false);
std::atomic_flag winner = ATOMIC_FLAG_INIT; t false. atomic_flag
void countim (int id) {
while (!ready) { std::this_thread::yield(); } 11 thread t for the ready si

for (volatile int i=0; i<1000000; ++i)
if (!winner.test_and_set()) 1 the f1
{ std::cout << "thread #" << id << " won!\n"; }
}i

int main () { std::vector<std::thread> threads;
std::cout << "spawning 10 threads that count to 1 million...\n";
for (int i=1; i<=10; ++i) threads.push_back(std::thread(countim,i));

2 ready = true; ready t
for (autok th : threads) th.join();
} thread #8 won! thread #4 won! thread #1 won! thread #9 won! ...
Programming in Modern C++ Partha Pratim Das Ms0.42

Then more on the atomic variables which | have given other examples condition variables,

futures, async each one of them there are more.

(Refer Slide Time: 30:16)

FPR P QIS GBY

W Race Condition and Data Race: Example 2
P

Race Condition and Data Race: Practice Examples

Programming in Modern C++ Partha Pratim Das Ms9.51

And then we have two more examples.

(Refer Slide Time: 30:09)

Eﬁ} Example 2

rPRPQEI SO

#include <functional>
#include <iostream>
#include <thread>
#include <vector>

struct Account { int balance{100}; };
void addMoney(Accounté to, int amount)

{ to.balance += amount; } I
int main() { Account account;

std::vector<std::thread> vecThreads(100);
for (auto& thr: vecThreads)
thr = std::thread(addMoney, std::ref(account), 50);

for (auto& thr: vecThreads) thr.join();
std::cout << "account.balance: " << account.balance << std::endl;

}

o 100 threads are adding Rs. 50 to the same account u%ing function addMoney but without
synchronisation

o Final balance differs between Rs. 5000 and Rs. 5100 and we have a data race

Programming in Moder C++ Partha Pratim Das M59.52

One in which, there is an account to which multiple threads are adding an amount. They are the
same synchronization problem will arise. So, because multiple threads are, so multiple threads
are actually updating their account. So, that is a situation and what you will have to do is to use
those mechanisms and convert it into a safe program. Obviously you will have to use the, the

random delay and the repeat process to be able to get the right set up.

(Refer Slide Time: 30:46)

Eﬁ] Example 3

PP P QYISO GEBY

o Let us consider a function that transfers money from one account to another.
o In the single-threaded case, all is fine:
#include <iostream>

struct Account { int balance{100}; }; tially eact
void transferMoney(int amount, Account& from, Accountd to) {
if (from.balance >= amount) { 181
from.balance -= amount;
to.balance += amount;
}
}
int main() { Account accountl, account2;
transferMoney(50, accountl, account2);
transferMoney (130, account2, accountl);

std::cout << "accountl.balance: " << accountl.balance << std::endl;
std::cout << "account2.balance: " << account2.balance << std::endl;
accounti.balance: 180
account2.balance: 20

Programming in Modern C+-+ Partha Pratim Das M50.53

And the other example is where you are transferring money from one account to the other. Now,
depending on in which order it happens, your transfer will maybe correct, may not be correct. So,

you will have to again make it safe by using a synchronization.

(Refer Slide Time: 31:11)

r‘ PP QHI SO EY

i@ Module Summary

o Understood synchronization issues in multi-thread programming in C++

o Studied various synchronization mechanisms through example

o Provided detail for self-study of synchronization mechanisms:

o Mutex

o Lock

o Atomics

o Condition Variable

o Future and Promises

o Async
o Explored use of the synchronization mechanisms to alleviate race condition and data

race and left practice examples

Mo ary Programming in Modern C++ Partha Pratim Das M59.55

So, that was all about concurrencies support in C++11 onwards. And we have studies through the
example to keep it manageable. | left a lot of stuff for your self-study to gain further knowledge.
Thank you very much, thanks for your attention. And we will meet in the last module.

