
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 58

C++ and Beyond: Concurrency: Part 1

Welcome to programming in modern C++, we are going to discuss module 58.

(Refer Slide Time: 00:36)

In the last module, we have concluded discussions on smart pointers, their policies and we have

familiarized with resource management using standard smart pointers from the library.

Specifically, unique_ptr, shared_ptr and weak_ptr, auto_ptr is deprecated.

(Refer Slide Time: 00:59)

In this module, today, we are going to introduce the notion of concurrent programming in C++

using C++’s own threads support. So, for this you will need to have some understanding about

concurrent programming, which I will assume that you have if you do not then you will have to

read up other material to understand what is concurrent programming and what are its issues.

Because that is an area which is not limited to C++ programming.

That is a general computer science knowledge about how do you program concurrently parallely

and so, on. Now, we will specifically expose here to the library support through std::thread

component and bind component. And discuss what are the, what are some of the common bugs

in thread trade programming that can happen. Specifically, the race condition and data race. And

we will discuss examples of thread programs which such bugs and look at some of their

solutions.

(Refer Slide Time: 02:15)

So, this is the content for this module.

(Refer Slide Time: 02:25)

And let us start discussing with thread programming in C++. You know about processes in

systems, like process is when we start a program it starts as a process and multiple processes run

in the system at the same time. And the process, processes can share, exchange data by what is

known as inter process communication. In so, processes are can be concurrent, they can be

parallel and so, on.

Now, thread is a lightweight process, a multiple threads run within one process. So, the

advantage that threads have that threads can communicate also through shared variables, shared

data, because they are within one process space. Which processes cannot do because they have to

protect the boundary of the processes data from corruption from other processes and so on. But

the threads, all threads are within one process and they can communicate to share data.

They can also do inter process communication kind of mechanism, but they are necessarily

lightweight processes. And therefore, in the recent past, recent in the sense of say last two

decades, concurrent programming using threads have become a dominant feature. So, they the

naturally being in the address space of a single process, they shared address space with other

threads and can communicate freely and for decades the C programmer, C++ programmers have

been doing concurrent programming, multi threaded programming as it is said using several

different libraries.

Predominantly the POSIX library which is common on the Linux platform or say the windows

thread library then there are several others like boost and so on so forth. So, in that context, what

is special about C++11 in the context of thread programming? The special thing is now, C++11

onwards, the library, standard library itself provides complete support for multithreaded

programming. You do not have to use a third party library like the POSIX library or any other.

So, using the primary component which is the thread component in the library, you can launch a

thread with a function, a function object, or even with a lambda. So you include the, that

component. And suppose I have a function, small f here, and you have a function object, capital

F here, and they do not do anything, they just kind of print a message, the overloaded operator

just prints a message. And this is how you invoke the thread.

So, you construct a thread t1 with the parameter f, the function parameter. I am using the C++

style of initialization because that is what you should be comfortable with. Similarly, it could

thread t2 could construct a functor object to initialize with. And as soon as that thread is

constructed, as in here, it starts executing. Now, if you just run this program, copy, paste and run

this program, you will see that you are not probably not seeing the outputs is not unlikely that

you will see any result.

The reason is, this thread gets started, as soon as constructed, this thread get started as soon as

constructed. And then main comes to an end. So main, now, I have created a thread, so it is done.

So, the main will complete, but main function is the main thread in the process that you are

running. So, once main completes, these threads are automatically terminated. So, they will not

show you any effect. So, what we will have to do for an effective thread programming, we will

have to tell main the main thread that wait these threads are still working do not terminate right

now wait for them to finish.

(Refer Slide Time: 06:57)

So, you say that by saying the thread variable dot join t1.join. So, t1 dot join tells me that well

you wait till I finish. Similarly, t2.join says that. So, with this, now, the both threads will have to

complete before main can actually terminate and therefore, you will see the result. This is, now

the interesting thing is these are parallel these are concurrent executions are happening at the

same time.

Even though t1 is constructed first and t2 is constructed next, and they start working as soon as

they are constructed, it is not known in which order they will execute the corresponding cout. So,

if you run it multiple times, in some cases, you will find that the function f1 is executing first.

And in some cases, you will find the functor F is executing first. I tried fifteen consecutive times.

And out of that ten times I got this and five times I got this. So, that is the indeterminism in terms

of thread execution, that will always be there.

(Refer Slide Time: 08:14)

Now this is this is fine. As long as you are just printing miscellaneous, but obviously the function

will need to have parameters. So, let us assume that our thread that the function of the functor

that it tries to it is trying to execute there is a parameter. So, the function has a parameter, let us

say a vector. And what it does, it kind of prints the vector with a range for kind of construct.

Similarly, the functor has a vector as a local variable as a data member.

And it is constructed with that, and the functor will also do that, it will print that the vector. I

have constructed a vector. So, now the question is how do I tell the thread that not only this

function, but I also need to give this parameter. So for this, you have a special template called

bind. So, bind basically takes a function and one or more parameters of that function, puts them

together into a function object and then passes that to wherever it is required. So, it creates a

functor instance from the function or the functor or the lambda and the parameters.

(Refer Slide Time: 09:46)

So, the bind is successfully used in this case, in the first case, to get the function and the

parameter to pass to the thread. So, now when the thread runs, it is invoking f with the parameter

that my_vec that we have passed. In the second case, since F is already a functor, we do not need

a bind, all that I need to do is to construct an instance of F with the my_vec, which I do here.

And you can see the result that that happens. Now, you will also see that if you run it multiple

times, you will also see, in some cases, the functor runs first. On some cases, the the function

runs first, it is indeterminable.

(Refer Slide Time: 10:40)

Now, so we have the trade execution, we have the input. So, now the question is how do you get

output. So, there are specific mechanisms to get output, though if a as a plain task, there is no

notion of return value, it is just an execution in the thread. So, it is not like a function which you

wherein you normally expect there will be a return value. This is a, this is a task, so, you just go

and do that task, execute that function, execute that lambda and so on.

But there are special mechanisms of that, which we will discuss in the next module. But what

you can always do is to get the output you can pass some parameters, as either a pointer

parameter or you can pass a reference parameter and get the output through that. So, let us say

we pass the vector as an input, and we pass a pointer to res. Where in res, we actually compute

the sum of the vector elements.

Similarly, here we introduce another data member in the functor and compute the add

summation. So, what now happens is, if I in, I have to invoke the function, I have to bind the

function f, the first parameter my_vec and a second parameter, which is the result. The result is

expected as a pointer to integer so, I have to pass the address of that. So, this is very typical of

how you call a function.

You bind that function is created and you invoke t1 with it. Similarly, a functor is directly

created in capital F. And if you now run it, you will not only be able to see what the, the list of

vector elements are, but after both of them have joined, that is finished, you can print the results

and you can see that the results are appearing here.

So, we have more or less the basic tasks that a function needs to do or function needs to do, we

can do that using the thread, using concurrent executions.

(Refer Slide Time: 12:53)

Let us take a little, more elaborate look into what does std::thread has. It is defined in the thread

component as a threat, it represents a single thread of execution and allows multiple functions to

execute concurrently in multiple different threads. So, return value is typically ignored, as I have

said, but if it terminates by throwing an exception, if it terminates by throwing an exception, then

std::terminate is called, which means that the entire program is terminated.

So, if any of the threads throws an exception, then the entire program will be terminated. So, you

will have to, control that within that. So, there are mechanisms for communication of the return

value, which we will we will see subsequently. But the most important thing is that a thread may

not always have a function associated with it to, to basically execute. So, the thread may be in a

state or a thread object rather, I mean not thread.

Thread object may be in a state that it actually does not represent a thread of execution. So, this

happens after a default construction, or you move the thread from the thread object to another

thread object you detach, or you join when the task is completed. So, in this, this thread object is

unique in terms of execution. That is no thread object can represent the same thread of execution.

And interestingly, the thread objects are not copyable, they cannot be copy constructed or

assigned, but they are movable.

(Refer Slide Time: 14:54)

So if you look at the basic, primary structure of the thread class, you will see that there is a

default constructor. There is a default constructor, there is a move constructor because it is

moved constructible, there is a parameterised constructor, which is explicit. This is templatized,

so that you can send, you can see that there is a variadic template being used here. And it has a,

you can see that this is deleted, that is the copy construction is deleted. So, copy construction is

not allowed. So, these are the basic properties.

(Refer Slide Time: 15:38)

It has a destructor which, I mean which is executed at the end of its scope. There is an

assignment operator, which basically is move assignment. So, if you, if you move a thread from

a thread object to another, then this thread object will not contain any thread. Now, we will see

this through examples.

(Refer Slide Time: 16:07)

So, I am just leaving with pointers to you. There are certain observer functions like joinable.

joinable is, is false before a thread starts execution or after it has joined in between while it is in

execution, then it is joinable. Every thread has a unique ID which can get that. It has a native

handle, you do not need not worry about these native handles and hardware concurrency right

now. But the main thing is you can join, detach or swap thread objects.

(Refer Slide Time: 16:42)

So, here is an example. So, let us look at this example I have a function f1 and which basically

repeats four or five times writing thread one is executing. And then it increments a variable, the

variable that it has got as a as a parameter, it increments that variable every time. Now then what

it does is this long thing what it means is something simple. This is std::this_thread::sleep_for.

So, what you are saying that whichever thread executes this is this thread.

And it says that this thread will now sleep, go to sleep for a certain amount of time. That is for

this much time the thread will not do anything. So, that is what is available also in the thread

component. And then you have to specify the time and that is available in the library in the

chrono component when you say that chrono::millisecond that is nanosecond and so on also, and

how much.

So, this click in just says that sleep for 10 milliseconds. The, the second function also does a

similar thing with thread two, then you have a class which has a member function bar, which

does it for thread three. Then there is there a another class baz, which is got the function operator

overloaded it does the same thing and so on.

(Refer Slide Time: 18:27)

Now, if you execute them, so, you will see that here I have constructed a thread constructed a

thread without giving it a function. So, it has a, it does not have an ID because it does not have

any thread. I mean just the thread object default constructed. In the second we have given

function f1 with a parameter n + 1. So, this is this is another way of constructing the thread.

Earlier we did bind and then pass the functor, here we are directly you can directly pass that we

saw that explicit very constructed with variadic templates.

So, it does construct t2. Similarly, we construct t3 with another, we construct t4 by moving t3.

So, the thread from t3 goes to t4. Therefore, you will see that between t3 and t4 the trade IDs are

same. Then I have t5 which is from the member function, I have t6 which is based on a on a on a

functor object. So, all these will come and then they are executing and as they execute they keep

on printing.

Now the difference is that as they execute, the order is not fixed. So, four threads are executing.

But 4321, 4321 so they are not necessarily but but later on, if you just see that is the order, then

we will see that it is 4231. So, you know, this order is indeterminable. So, this is basically the

typical thread execution.

(Refer Slide Time: 20:25)

Just a little word about bind, bind, as I said takes a function or a function called, any callable

object and the parameters and put them together. And bind is a nice feature that it can put these

parameters in the functor. And while putting them it can specify some of the parameters or leave

some of the parameters for future. And there is a, there is a particular namespace called

placeholder where these names, these are variable names, as you can see, underscore is a valid

beginning of a variable name, identifier name, so underscore 1, 2, 3, et cetera, are defined.

(Refer Slide Time: 21:03)

So, let us see, suppose you have a function with three parameters. And you want a new function

with two parameters, where the middle parameter here should be four. So, you want this, you

want. What you can do is obviously you can, you can write g and call this that is elaborate

mechanism. But what you can do can do std::bind f. And then say _1, _1 will mean the first

parameter of g which will be called.

Then the second parameter of f you keep as 4 fixed and the third parameter you passes _2, which

means the second parameter of g in future. So, now when we will call g 2 3, it will actually mean

a call, f 2, 4, 3. The first parameter comes here, and this order is arbitrary, you can put the first, I

mean _2 first _1. So. you can basically shuffle around the order of the parameters, you can make

certain parameters default, you can use it.

So, this bind basically makes it makes a very generalized to function pointer as a functor object.

And it is very useful in passing parameters to STL algorithms. So, here below you have a, I have

a simple example to show how it can be used as a as a callback. So, this is the callback type, you

remember the function component. So, I say void float result. So, it means it will take a float,

give me a void that is the type.

And I have a function that runs for a long time. So, what you do, you set another function call

back function, which basically will be called while this function has completed its task. So, call

back float result, which says this is the result. And that now, you wrap your long running

function into an asynchronous function. You bind the call back with this particular function with

a placeholder, which is _1, that is whatever you will give to call back as a parameter will go

there. So, that is a result comes out here, just try this out. This is could fun.

(Refer Slide Time: 23:47)

And in the next two slides, I have given different situations for bind, which you may just try out.

(Refer Slide Time: 23:51)

This is this is not code to thread programming, but I thought that bind is so widely used in terms

of creating function objects for threads that you should be more familiar with it. So, I have given

a detailed example for you to try.

(Refer Slide Time: 24:08)

Now, so that is the basics of, what happens in terms of threads.

(Refer Slide Time: 24:16)

But threads are a big boon in terms of it, enhances performance, it allows you to, keep on when

something is being done, and the system is busy with that you can still do something else in a

different thread and so on, but they do not come without a price. So, there are different problems

with threads. Now, the main is race condition and data race. So, these are talked about together.

So you might have thought that they are the same thing.

They are related, but they are not the same thing, not at all. A race condition is more like a

semantic error. A race condition is, is a situation where operations of multiple threads are kind of

mixed up interleaved, so that they are not producing the right result. That is a race condition.

And the data race is, when there is one single object, there are at least two threads, which are

accessing them.

And at least one of them is trying to write. If multiple threads read a value, there is no problem.

But if two or more threads try to read, write a value, at least one of them tries to write others

maybe reading, then you have a data race. Often data leads to race condition. But data race, but

test race condition may just happen by itself.

(Refer Slide Time: 25:37)

So, let us take a race condition example.

(Refer Slide Time: 25:40)

Suppose we want to do something very trivial, we want to work out the sum of squares, from 1

to 20. You know, this by this formula, this is what should happen if 1 square plus 2 square like

that. And how we do that? We have a function square, which squares the parameter and updates

a global accumulator. So, if I call square in a loop, one after the other, then the sum will get

computed. This is a sequential program.

Now, let us try to do this, let us, let us just for the sake of it, assume that x into x, let it be a very

heavy computation. So, I want to do them concurrently, when when 1 squared is being done, 2

square should be done concurrently, 3 squared should be done concurrently, and so on. They I

mean x into x is not certainly heavy, but I am just using as a representative. So, what we will do,

we will spawn 20 threads for 20 numbers, each thread will do the square for as much time it

takes and update the accumulator. So, at the end, I should get the result.

(Refer Slide Time: 26:52)

Now, if I do that, so I have the thread version, there is no changes here. But here, what I do, I

make a vector of threads. And I push the 20 threads, each with a different value of i for the

function square. And I am just using a raw function pointer here. And I just put that in the vector,

create and push them. So, they are all in the vector. As soon as they are created, they start

working. And then I run over that vector to see if they have joined. So, this for loop will end

when all of these threads have joined. And once that is done, my result is ready, very simple

program.

(Refer Slide Time: 27:40)

So, now, will it work? The question is, will it work? So, you try it, you try it and it gives the

result 2840, 2870 at is suit. You keep on trying it and well, you always get the result. And you

are still thinking that well, is it, is it correct? Is it correct? Will this work? So, let us take two

things. One is that well, we had assumed that x into x is heavy, but we know that it is actually not

heavy.

So, let us make it heavier. So, what we can do, instead of doing accumulator plus equal to x into

x, let us compute x into x into some temporary. Let us sleep for a while and then add this

temporary to the accumulator. This sleep effectively increases the perceived load or perceived

computation time for x into x. So, that that way, I just make the load heavier by introducing a

delay.

And then I say that it will not be the same for all numbers, 1 into 1 and 7 into 7 may not need the

same amount of time. So, I just randomize, I put a random delay. So, what I do is I create a, I

create, I generate a random number between 0 to RAND_MAX and normalize it to 100. So, that

I get a random number between 0 to 100. And then I use that in the millisecond. So, some

occasion it will be 0 millisecond, on 1 millisecond or 100 milliseconds. And we try it again.

(Refer Slide Time: 29:28)

Now, so this is this is the total program, I am just so this is what you have done to put that

random delay, which is what we have just discussed.

(Refer Slide Time: 29:39)

Now, we say that, we again keep trying, it gives the correct result. I keep trying, keep trying, I

did this for 36 times I got to 2870. But on the 37th attempt, suddenly I got a result 2845. The

question is, what is the problem? Is it, is it a computer error or a false observation? So, I tried

100 more times, more than 100 times, but I always got to 2870. So, I realized that well, before I

can be convinced, I need to have some automated test for this.

I cannot just keep on every time, go to online gdb and run run run, run, getting mad. So, how can

I do an automated test? It is very simple, I will just put this whole stuff of, creating the vector of

threads, spawning the 20 threads and joining up the threads within a scope, so that they are all

localized, and put that in a do, do while loop. When have a trial count variable, every time it goes

through this loop, this whole run has happened once.

And that trial count is incremented. And how do I terminate the loop? I terminate the loop by

checking if the accumulator is 2870. If that accumulator is 2870, it is correct. So, then I will try

again. If it is not, then I will exit. But that means that if the program is correct, it will be an

infinite loop. Well, but then Murphy's Law says that, if anything can go wrong, it will. So, let us

see what we find.

(Refer Slide Time: 31:24)

So with this, this is, again, the entire program, there is a random delay, and this is a repeat. And

since it might go on for a long time, what I do is every, after every 100 trials, I just print a

message on the console, that 100 trials done, 200 trials done so that, you know, I know that the

program is working, it is alive. And then I wait, if a wrong result would come.

(Refer Slide Time: 31:52)

Murphy is correct. I did this for 20 times. And you can see this is the actual data I collected. So,

when I run this program for the first time in the 56th trial, it produces 2845. In the second trial,

second run, in the first trial itself, it produced 2806, and so on. In some cases it has taken second

1502 runs to produce a wrong result, but in every case, 20 cases it has eventually proved it. So,

there is something wrong about this. And if you look at all these values, you will see that these

values are less than 2870, all of them.

(Refer Slide Time: 32:38)

So, what is going on? So, to understand, let us you know, you know, split into the simple square

function as to what it is doing. So, what will the compiler do? Compiler has to multiply. So, the

code written is necessarily x * x. Now the compiler has to compute x turn x into a temporary has

to read the accumulator into another temporary.

And then add these two temporaries. And put in the accumulator. This is a basic process. So, let

us say I have two threads. And they are they are independent. So, they the order in which those

instructions are executing, are can interleave in any way. But at any cycle only or at any point,

the instruction of only one thread can execute because there is a, there is only one processor to

execute.

So, let us say if they are interleaved in this way that it first does this in thread two, then it does

this in thread one. So, in thread 2 t1 is 4, in thread 1 t1 is 1, then it does this. So, in thread 2, t2 is

0, because accumulator initially is 0. Then in thread 1, t2 becomes 0, because accumulator is 0.

Then it updates the accumulator. So, in thread by thread one accumulator becomes 1 and then it

does this, accumulator becomes 4.

But it should have been 1 + 4 5. So, you can see that the interleaving only because that both these

threads have in this process, started with a value of the accumulator which is known updated one,

and both of them have updated after that, because of this interleaving. And that is the sole

problem of having the incorrect result. And you can always see that it will always have a lower

result than what is expected. And that is what you have been seeing. And this is exactly what is

called the race condition.

(Refer Slide Time: 34:47)

So, how to solve that? How to fix that? There are multiple solutions.

(Refer Slide Time: 34:51)

So, I will just talk about two. One is solution by mutex. There is something like mutex that is

defined, which is in the mutex component. So, it is a mutex and give it a mutex variable name.

Then you do a lock on the mutex. If you do a lock on the mutex, what it does, it is an atomic

operation and what it does, the first thread that comes here will get the lock. And will be allowed

to go and do the next instruction.

But the second thread which comes to this point, will not get the lock because the lock has been

given to one thread. So, it is like having a unique lock, unique key. So, key, the thread which is

having the lock has not released it. Any other thread, all other threads will keep on waiting at this

point.

And when the thread which has the lock unlocks it, then one of these threads will get the lock

again. And that will start proceeding others will wait. So, this will make sure that at any point of

time, only one thread, will be able to read and write that monitor because this is both read and

write of the accumulator.

(Refer Slide Time: 36:06)

And we put it in the solution very simply fully few lines I changed include this, have a mutex

and put this locks and then try again. Like our, our repeated trials with delay, if we do that, if we

try again and we will see.

(Refer Slide Time: 36:20)

I have waited up to 6000 runs of this and the program did not terminate, this is truly an infinite

loop.

(Refer Slide Time: 36:30)

And other way of doing this is using what is known as atomic container. Atomic is a specific

type of container, where whatever you put as an atomic container can be changed only by one

thread, not by others. So, you can just say atomic include this say atomic and things will get

done.

(Refer Slide Time: 37:00)

And this is so just these two inclusion of this. And instead of a global declaration, you just say

atomic int. So, it gives you an atomic integer so that when it is trying to change the accumulator,

which is atomic, no other thread will be able to read or write into that. This also solves the

problem thread. We tried it 15,000 plus times and everything was okay.

(Refer Slide Time: 37:31)

So, this is broadly the basic introduction to the thread programming and the race condition. We

will talk more about these in the next module, but we have got a sense of how to create threads,

how to run them how to join, how to bind functions, or functors to the thread and how to solve a

very simple problems of race condition using mutex or atomic. We will discuss more of these in

the next module. Thank you very much for your attention.

