Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture — 58
C++ and Beyond: Concurrency: Part 1

Welcome to programming in modern C++, we are going to discuss module 58.

(Refer Slide Time: 00:36)

Eﬁ} Module Recap

o Discussed various pokicies of smart pointer
Ownership Policies
Implicit Comersion policy
Kull test poficy

o Familiarized with Rescorce Management using Smart Pointers from Standard Library

In the last module, we have concluded discussions on smart pointers, their policies and we have
familiarized with resource management using standard smart pointers from the library.

Specifically, unique_ptr, shared_ptr and weak_ptr, auto_ptr is deprecated.

(Refer Slide Time: 00:59)

o To introduce the nction of concurrent programming in C++11 using theead support

o To explors bbrary sugport through std::thread and sid:bind
o To expese to the bugs in thread programming - race conditicn and data race

o To discuss examples of thread programs with bugs and their solution

In this module, today, we are going to introduce the notion of concurrent programming in C++
using C++’s own threads support. So, for this you will need to have some understanding about
concurrent programming, which I will assume that you have if you do not then you will have to
read up other material to understand what is concurrent programming and what are its issues.

Because that is an area which is not limited to C++ programming.

That is a general computer science knowledge about how do you program concurrently parallely
and so, on. Now, we will specifically expose here to the library support through std::thread
component and bind component. And discuss what are the, what are some of the common bugs
in thread trade programming that can happen. Specifically, the race condition and data race. And
we will discuss examples of thread programs which such bugs and look at some of their

solutions.

(Refer Slide Time: 02:15)

[——T W

So, this is the content for this module.

(Refer Slide Time: 02:25)

Fal
¥ Spawn Thread
1

o A thread 5 3 regessentation of an
o |n C4411, a thread t ot = it differs from a
process, which generally does not directly share data with other processes
o Ci+ has had a host of threads implementations for a vanety of hardware aad operating
systems m the past t
o A thread is launched by constructing a std: :thread with a function | 3 function object /2 A
tiocluds <loatroamd ===
#iaclode <zircad?
using aaseepace 1%4;

void () | cou In £0)* << exql; .K
strogs F [W8T Sparator()() | ceut << *In PO <€ emdl; |;) l',

;.hl'lld H,g('}:\/

:thresd t2(FC0)

— e

.

// termirate called vithoet an sctive wiceptios

o This program is unbkely to gree any useful rests — whatevor £() and F{) mght do
o The program may terminate before or after t1 executes £() and befoee or after t2 executes F()

[L——T e

2ot Pysben Die toy

Spawn Thread

o A thread 5 3 regeesentation of an

o In Ce411, a thread « it differs from 2
process, which generally does not directly share data with other processes

® Ci+ has had 3 host of threads implementations for a vanety of hardware aod operating
systems @ the past

o A thread is launched by constructing a std: : thread with 2 function | 3 function object / 3 A

flacionds <loatroan>

#iaciode <iready

using asespace 154

void £() | cout << “In £()* << mdl; };
void eparntor()() | esut << *In FOO" << emdl; |; |

1 —

/I termirate called vithuet an active wiceptios

o This program is uniikely to gve any useful results — whatever £() and F{) mght do

o The program may terminate befors or after t1 executes £() and before or after t2 executes F()

wgre— w Ve

Spawn Thread

o A thread 5 a repeesentation of an

o In Ce411, a thread ‘ = it differs from a
process, which generally does not directly share data with other rocesses

o Ci4 has had a hast of threads implementations for a vaniety of hardware and operating
systems o the past

o A thread is launched by constructing a std: i thread with 2 function | 3 function abject /3 A

it J
atd: :thread ti{f}; / to

and; ithorend t2(F0)) Fl)O)

/{ termirate called witdoet an sctive wiceptios

o This program is unbkely to gve any useful results — whatevor £() and F{) mght do

o The program may terminate befoes or after t1 executes £() and befoee or after 12 executes F()

gy @ Sk 2ot Pyten Die tos

And let us start discussing with thread programming in C++. You know about processes in
systems, like process is when we start a program it starts as a process and multiple processes run
in the system at the same time. And the process, processes can share, exchange data by what is
known as inter process communication. In so, processes are can be concurrent, they can be

parallel and so, on.

Now, thread is a lightweight process, a multiple threads run within one process. So, the
advantage that threads have that threads can communicate also through shared variables, shared

data, because they are within one process space. Which processes cannot do because they have to

protect the boundary of the processes data from corruption from other processes and so on. But

the threads, all threads are within one process and they can communicate to share data.

They can also do inter process communication kind of mechanism, but they are necessarily
lightweight processes. And therefore, in the recent past, recent in the sense of say last two
decades, concurrent programming using threads have become a dominant feature. So, they the
naturally being in the address space of a single process, they shared address space with other
threads and can communicate freely and for decades the C programmer, C++ programmers have
been doing concurrent programming, multi threaded programming as it is said using several

different libraries.

Predominantly the POSIX library which is common on the Linux platform or say the windows
thread library then there are several others like boost and so on so forth. So, in that context, what
is special about C++11 in the context of thread programming? The special thing is now, C++11
onwards, the library, standard library itself provides complete support for multithreaded

programming. You do not have to use a third party library like the POSIX library or any other.

So, using the primary component which is the thread component in the library, you can launch a
thread with a function, a function object, or even with a lambda. So you include the, that
component. And suppose | have a function, small f here, and you have a function object, capital
F here, and they do not do anything, they just kind of print a message, the overloaded operator

just prints a message. And this is how you invoke the thread.

So, you construct a thread t1 with the parameter f, the function parameter. I am using the C++
style of initialization because that is what you should be comfortable with. Similarly, it could
thread t2 could construct a functor object to initialize with. And as soon as that thread is
constructed, as in here, it starts executing. Now, if you just run this program, copy, paste and run
this program, you will see that you are not probably not seeing the outputs is not unlikely that

you will see any result.

The reason is, this thread gets started, as soon as constructed, this thread get started as soon as
constructed. And then main comes to an end. So main, now, | have created a thread, so it is done.
So, the main will complete, but main function is the main thread in the process that you are

running. So, once main completes, these threads are automatically terminated. So, they will not

show you any effect. So, what we will have to do for an effective thread programming, we will
have to tell main the main thread that wait these threads are still working do not terminate right

now wait for them to finish.

(Refer Slide Time: 06:57)

Fa
oS Join Thread
{1

L B S R A

o We need to wait for the two tasks o complete:

Maclude <

siaclude

a%d;ithremd tiff);

atd: ithread 2{F(}) FOO)

Non-determisistic belavior on display

o The join()s ensure that we don't terminate until the threads have completed

o We need to wait for the two tasks 1o complete:

faclode Clcotreas?
fixcluds <hreaq>
using samespace std; 4 7
vold £€) [cout o< "In £0)* << sadl; }; ./
struct F | woid operator() (A cout << *In FOI()" << audl; |; |
int maind) (
svd: ithresd tiff)) th

atd: ;thread t2{F(}} FOO

ti-join()
t2.join();

Non-determisistic bebavior on display

N S

o The join()s ensure that we don't terminate until the threads have completed

[T

So, you say that by saying the thread variable dot join t1.join. So, t1 dot join tells me that well
you wait till I finish. Similarly, t2.join says that. So, with this, now, the both threads will have to
complete before main can actually terminate and therefore, you will see the result. This is, now
the interesting thing is these are parallel these are concurrent executions are happening at the

same time.

Even though t1 is constructed first and t2 is constructed next, and they start working as soon as
they are constructed, it is not known in which order they will execute the corresponding cout. So,
if you run it multiple times, in some cases, you will find that the function f1 is executing first.
And in some cases, you will find the functor F is executing first. | tried fifteen consecutive times.
And out of that ten times | got this and five times | got this. So, that is the indeterminism in terms

of thread execution, that will always be there.

(Refer Slide Time: 08:14)

r"!‘ s ang e
iﬁi Thread with Parameters

® Basically. the standand lleary function s1d: : biod makes o function cbject of its argumests

o Busically. the standard lbrary functon e1d: ; biod makes & function cbject of its argumests

tede Clostreas

Cuireads

® Basically. the standand lleary functon svd: : biod makes o function object of ity argumests

Now this is this is fine. As long as you are just printing miscellaneous, but obviously the function
will need to have parameters. So, let us assume that our thread that the function of the functor
that it tries to it is trying to execute there is a parameter. So, the function has a parameter, let us
say a vector. And what it does, it kind of prints the vector with a range for kind of construct.

Similarly, the functor has a vector as a local variable as a data member.

And it is constructed with that, and the functor will also do that, it will print that the vector. I
have constructed a vector. So, now the question is how do | tell the thread that not only this
function, but | also need to give this parameter. So for this, you have a special template called

bind. So, bind basically takes a function and one or more parameters of that function, puts them

together into a function object and then passes that to wherever it is required. So, it creates a

functor instance from the function or the functor or the lambda and the parameters.

(Refer Slide Time: 09:46)

* Clostreas>
ade COyready

Flntlege Cfazctioasly /) and: b
sy fraseszace sl
wideice »

A S { Pl L S

gt << el

® Basically. the standand Rleary function e1d: : biod makes & functios cbject of ity argumests

oy 0 Medore Pt Py iien D

feelauts 3

struct F | vectores
Fivecsar<zeet o) 9wy} {)

eid

® Basically. the standand lleary function e1d: : biod makes o function cbject of it argumests

Frgromminy w Medven e) e P o

¢

® Typicaly, we would liee 10 pass some arguments to the task to be sxecoted. For example

Flaclede Clostreas

Finciste COyrands

|t -y

® Basically. the standand lilrary function s1a:: biod makes i function chject of its argumests

So, the bind is successfully used in this case, in the first case, to get the function and the
parameter to pass to the thread. So, now when the thread runs, it is invoking f with the parameter
that my_vec that we have passed. In the second case, since F is already a functor, we do not need
a bind, all that | need to do is to construct an instance of F with the my_vec, which | do here.
And you can see the result that that happens. Now, you will also see that if you run it multiple
times, you will also see, in some cases, the functor runs first. On some cases, the the function

runs first, it is indeterminable.

(Refer Slide Time: 10:40)

s s ang e 4

Y s
: ; read with Uutput
=

® |n general we mould abso fike 1o get 2 result Sack from an executed tase

© With plain tasks, thers is no notion of & seturn value, 524 foturs & the cormct defaidt chooe for that
® Ahersatively, we can pass an argumest to 3 task teling o where to put its sesuit. For example

Fintiede Clantirea

Alteadr

nd %
¢ tea) | I L))" i
o ——
feinita < X, Stes v g | .
et
I
o4
" reefres) «
& N

imt saixi vectar i tax
steiitaread slietd 4
¢ taraas
1ai "\a'y

Pt s any

F
@ Thread with Output

® n genaral we mould abso like 1o get @ result Back from an executed tase
the correct default choos for that

o put its resuit. For example

Now, so we have the trade execution, we have the input. So, now the question is how do you get
output. So, there are specific mechanisms to get output, though if a as a plain task, there is no
notion of return value, it is just an execution in the thread. So, it is not like a function which you
wherein you normally expect there will be a return value. This is a, this is a task, so, you just go

and do that task, execute that function, execute that lambda and so on.

But there are special mechanisms of that, which we will discuss in the next module. But what
you can always do is to get the output you can pass some parameters, as either a pointer
parameter or you can pass a reference parameter and get the output through that. So, let us say
we pass the vector as an input, and we pass a pointer to res. Where in res, we actually compute

the sum of the vector elements.

Similarly, here we introduce another data member in the functor and compute the add
summation. So, what now happens is, if I in, | have to invoke the function, I have to bind the
function f, the first parameter my_vec and a second parameter, which is the result. The result is
expected as a pointer to integer so, | have to pass the address of that. So, this is very typical of

how you call a function.

You bind that function is created and you invoke t1 with it. Similarly, a functor is directly
created in capital F. And if you now run it, you will not only be able to see what the, the list of
vector elements are, but after both of them have joined, that is finished, you can print the results

and you can see that the results are appearing here.

So, we have more or less the basic tasks that a function needs to do or function needs to do, we

can do that using the thread, using concurrent executions.

(Refer Slide Time: 12:53)

std: :thread

¢lass thread;

o Defined in <thresds

o The class thread regresents a Threads allow
o Threads
(pending any 05 schedulng defays) peovded as 3

constructor argument

o The and if @ terminates by theowing an
excoption, std; ;terminate is called

o The top-Yevel Tunchion may communicate its return value or 30 exception to the caller via
std: iproaise or by medfying shared variables (which may require synchronization, see
std: ;qutex and std: :ateaic later)

¢ otd: :thread cbjects may ako be in the state that does not represent any thread (after dofault
construction, move from, desach, or foin), and a thread of exacution may not be associated
with any thread objects (after dotach)

o No two std: :thraad cbjects may represant the ssme thread of execution:

o std: ;thread is not CopyConstructitde or
utd: ithread is MoveConmstroctibde and Moyed
SRR

¢lass thread;

o Defined in <thresd>

® The class thread represents a Theeads allow

o Theeads
(peanding any OS5 schedulng delays) ovided a5 3
CONStrUCtor argumant

o The and if @ terminates by throwing an

exception, std: (tersinate & called
o The top-Yevel function may communicate its return value o 30 exception to the caler via
std: ;proaise or by modfying shared variables (which may requure synchronization, see
fetd: ;qutex and std: :ateaic later)
o 5td: :thread objects may ako be in the state that does not represent any thread (after default
construction, move from, detach, or foisn), and a thread of exacution may net be associated
with any theead objects l;kr"_;c',n:.'.r_.

¢ No two std: :thread cbjects may represant the sime thread of execution:

0 std: ;thread is not CopyConstructitde or Copylias “ D
> utd: cthread it Moyel rectibde and MoveAssgnable 1Y
Nosang s U Vrvien S

Let us take a little, more elaborate look into what does std::thread has. It is defined in the thread
component as a threat, it represents a single thread of execution and allows multiple functions to
execute concurrently in multiple different threads. So, return value is typically ignored, as | have
said, but if it terminates by throwing an exception, if it terminates by throwing an exception, then

std::terminate is called, which means that the entire program is terminated.

So, if any of the threads throws an exception, then the entire program will be terminated. So, you
will have to, control that within that. So, there are mechanisms for communication of the return
value, which we will we will see subsequently. But the most important thing is that a thread may
not always have a function associated with it to, to basically execute. So, the thread may be in a
state or a thread object rather, | mean not thread.

Thread object may be in a state that it actually does not represent a thread of execution. So, this
happens after a default construction, or you move the thread from the thread object to another
thread object you detach, or you join when the task is completed. So, in this, this thread object is
unique in terms of execution. That is no thread object can represent the same thread of execution.
And interestingly, the thread objects are not copyable, they cannot be copy constructed or

assigned, but they are movable.

(Refer Slide Time: 14:54)

PP ABNYUAe LD

Fal
@ std: :thread::id and std: :thread: :thread

¢ 1d: represents the id of a threasd
o Member Functions

ptd: itaread: tarsad Comstructor; Constructs the thread object

So if you look at the basic, primary structure of the thread class, you will see that there is a
default constructor. There is a default constructor, there is a move constructor because it is
moved constructible, there is a parameterised constructor, which is explicit. This is templatized,
so that you can send, you can see that there is a variadic template being used here. And it has a,
you can see that this is deleted, that is the copy construction is deleted. So, copy construction is

not allowed. So, these are the basic properties.

(Refer Slide Time: 15:38)

PP LAT IR Y

std: :thread:: thread and std::

o Member Functions
o gtd:rthread:: “thread(): Destructor; Destroys the thread object
I othis has an assocated thread (jotoabla() == true) std: :termizate() & called
A thread obpet does not have 3n associated thwead (and is safe to destroy) after
it was defavlt-constrected
— it was moved from
— join() has been called
detach() has been called
std; ithread: operator= /
threadk cperatore(threadtt other) noexcept;
W sthia stil has an sssoclated running thread (that &5, joinable() == true), call
atd: ! terminase{)
Otherwise, assigns the state of other to sthiz sed sets other to a default constructed
dals
After this call, this->get_1d() & equal to the valve of other.get 3d() pnor to the
call. and cther no longer represents a thread of execution

It has a destructor which, I mean which is executed at the end of its scope. There is an
assignment operator, which basically is move assignment. So, if you, if you move a thread from

a thread object to another, then this thread object will not contain any thread. Now, we will see

this through examples.

(Refer Slide Time: 16:07)

L B BN A A o

e
iﬁ‘i std: :thread: Observers and Operations

o Member Functions:
Olbservers
joinable: checks whether the thread running in paraliel contaxt is inable. Typically
Joinable is false before it starts execution ce after it has joised
— Joinable is true whie excuting
gatdd retums the id of the thread
Tative handle retwns the underlying mplemontation-defined thread handle
g Wmu::enr}' [static}: returns the numbsr of cancurrent threads supported
By the implementaticn
Operations:
jotn waits for the thread 1o finish its execution
Tetach: permits the thread to exacute independently from the thread handle
E'k_'i?«aas two theead objects

So, | am just leaving with pointers to you. There are certain observer functions like joinable.
joinable is, is false before a thread starts execution or after it has joined in between while it is in

execution, then it is joinable. Every thread has a unique ID which can get that. It has a native

handle, you do not need not worry about these native handles and hardware concurrency right
now. But the main thing is you can join, detach or swap thread objects.

(Refer Slide Time: 16:42)

<lostroan?

utiliey std:ired, 1tdiimove

el std:this thread::aleep_for

<chrono? std: :chreno: :millizeconds

10322 n) { forlint is0; 1<3; ++3) | sodi:cous << "Thread 1 executisg'n®
oxlztd

—— N

| s

——
t3raad: isleep carmo::xiilize

vosd r2(1ash n) [for(las (e0; 1<5; ++1) { #td::ceut << "Thread 2 exaceting\n’|

1s_thread::slecp_for(std: ! chrepo: imilliseconds(10)); |
\

I

class foo | pudlic: Int n =0

void Bar{) { feriint in0;

| coat ¢¢ *Thread ! executizg'n®;
tom; std:iakie thvead::aleep for(atd::chromo::afllisecondati0)};)

b
clase ez | poblic: int o« Oy
yoid eparator()() { f2

{::chrom :atlliizeconds{10})
\
b

this theead: ialeep o2

Pogrommey @ Medvee

L

<lostreas?
lude <utllicy

tiocluda <tizeadd

ref. 114 1m0ve

d::this_thread::alesp_for
tizclude <chroao? std:

to: :millizecords

void 1043z n) { for(int is0; 1<5) #+44) | s3d:izcous <«

LUt LR

1 aleap_for{ Jrchrmo:: lisera:]
|
!
void r2(iazd n) [for(ias 1s9; 1<5; ++1) { #td::cout << "Thread 7 axaceting\n®|
s+, std thread::slesp_for(std rimdllsoeconds(10)); |

\
|

class foo | poblic: Int n =0

woid Bar() { ferlint ie0;

w41l |

td:zcout <¢ *Thread ! executisg'n®;
eom; std:this thread: :aleep_ for(std::chrozo: :atllisecondsail0l}; |

b
class taz | poblic: int ne O

yoid eparator()() | forlint 3=0; $<Bb; +43) | atd::cout << "Thread 4 executing'a”
sleep_for{std::chrom: :ailliseciods{10})

this_thewad: ialeep fof

[—— -

tizclude <iostreas?

[T y J:ir . /

fiocluda <¢siread> std:-ithis_thread Jlac:_t‘:r‘/

tizclude <chroao™w std millisecords

yoid f101a2 n) { for(int 1s0; 1<3; ++44) | s3di:cons << "Thread | executisg'n®

“4n; otd::tkis thread:isleep_for{scd::chrmo::xilliseca |
\ _,/\/’_,—”
I
vosd 12(1a%h o) [for(ias 1s9; 1<5; ++1) { #td::cuut << "Thread 7 axaceting\n®|

s+, std:ithis_thread::sleep_for(std:!chrapo: imillisscnads(10))) |

t <4< *Throad 2 executiszg'n®

or{atd: chromo::atllisecondati0)}; |

yoid eparator(){) | foriint 3=0; £<5; +41) | atd::cout << "Thread 4 executing'a
sen; stdi:this_thread: tsleep_for(std: :chromi:aillisecsnds{10})

tizclude ¢iostreas?
Slaclude <utlliey> /) stdiiref. #tdiimove
tincluda <¢tiread> std::this_thread::alesp_for
fizclode <chro ao0?
yoid £101a% n) { for(int 1e0; 1<5; ¢+ I sxecutisg'n®
s4m; otdiztkis thread: sleep_for{std::chromo::=millisecands(10))
| o
void 1I0iash n) | for(ias («0; 1<5; ++1) { std::ceut << "Thread 2 axaceting'\n’|
++n1; std:ithis_thread::slesp_tor(std: :chrzoo: imillisscnads(10)); |
}
class too | poblic: int n = 0; /
woid Bar() { forlint inD; $<B; +43) | std:i:zcout <¢ *Thread) executisg'n”
o . std §_threa ep_for{std::chrozo: :aillisecondati0)); |
b
slams ez { pobl A
v03d opezator()() | for{int 1e0f 5<b; +41) [atd::cot << "Thread 4 executizg'a
————a Atdi:this_ thread: sleap_for(std: chrom: :aillisecsnds{10})
ki
ai wad: aleep foo

So, here is an example. So, let us look at this example | have a function f1 and which basically
repeats four or five times writing thread one is executing. And then it increments a variable, the
variable that it has got as a as a parameter, it increments that variable every time. Now then what
it does is this long thing what it means is something simple. This is std::this_thread::sleep_for.

So, what you are saying that whichever thread executes this is this thread.

And it says that this thread will now sleep, go to sleep for a certain amount of time. That is for
this much time the thread will not do anything. So, that is what is available also in the thread

component. And then you have to specify the time and that is available in the library in the

chrono component when you say that chrono::millisecond that is nanosecond and so on also, and

how much.

So, this click in just says that sleep for 10 milliseconds. The, the second function also does a
similar thing with thread two, then you have a class which has a member function bar, which
does it for thread three. Then there is there a another class baz, which is got the function operator

overloaded it does the same thing and so on.

(Refer Slide Time: 18:27)

r"" L R
@ std::thread: Example

Qug te . 4

Now, if you execute them, so, you will see that here | have constructed a thread constructed a
thread without giving it a function. So, it has a, it does not have an ID because it does not have
any thread. | mean just the thread object default constructed. In the second we have given
function f1 with a parameter n + 1. So, this is this is another way of constructing the thread.
Earlier we did bind and then pass the functor, here we are directly you can directly pass that we

saw that explicit very constructed with variadic templates.

So, it does construct t2. Similarly, we construct t3 with another, we construct t4 by moving t3.
So, the thread from t3 goes to t4. Therefore, you will see that between t3 and t4 the trade IDs are
same. Then | have t5 which is from the member function, | have t6 which is based onaonaon a
functor object. So, all these will come and then they are executing and as they execute they keep

on printing.

Now the difference is that as they execute, the order is not fixed. So, four threads are executing.
But 4321, 4321 so they are not necessarily but but later on, if you just see that is the order, then
we will see that it is 4231. So, you know, this order is indeterminable. So, this is basically the
typical thread execution.

(Refer Slide Time: 20:25)

std: :bind

tesplatecclans F, <lass hrge>
fiede/ biadi(Fek £, Arvgnik args); (entil
F Arge> zince
o/ Bind(FAR f, Acgedi ATg

F, class Arge> since
f, Arpie args); (entil
Arge> [since

biad(Fak {, Argmkk argel;
o Defined in <functiomal
o The function template bind generates a forwarding call weapper for £ Calbeg this weapper is
equvakent to imcking { with some of its arguments hound to arge. Parameters are
£ Callabde obyect [function object. ponter to function, reference to fumction, ponter to
member function, or pointer to data member) that will be bound to some arguments
args: list of agumants to bind, with the unbound arguments replaced by the placercldors

1 2 3 of namespace std: ;placeholders

Just a little word about bind, bind, as | said takes a function or a function called, any callable
object and the parameters and put them together. And bind is a nice feature that it can put these
parameters in the functor. And while putting them it can specify some of the parameters or leave
some of the parameters for future. And there is a, there is a particular namespace called
placeholder where these names, these are variable names, as you can see, underscore is a valid

beginning of a variable name, identifier name, so underscore 1, 2, 3, et cetera, are defined.

(Refer Slide Time: 21:03)

¢ Using std::band to set: auto g = wtd::bindif, .‘\Q“
first (or second) param in £. £ becomes a partial function o
® atd: :bind is useful in varicus contexts including /o ,.; - %)
Partial functians {ee currying) = ;‘ \ <)
> Reordering parameters | Defining default parameters %

Generalized function pomter for callback and Passing functoes to STL algorithms

sdn <lastiessr

with the middle 05!1‘\{4%@1

Piasleds Crasctiomls

class MClase | trpednd std: il

tiomtrodd (flowt tesuit)) TOallback
1eld lasgeonlagfeect \

TCalldack calllack) |

allbeckireeade);

lugRassingmetion

ik -
& ok, this, st placessdéess:. 1))
loagizeningFaactioa(rallback);
)
| =
v Vroten Tin

LA

® Supposs we have a calable object £ with 3 parameters: £(a, b, o);
® We want 3 new fusction cbject ¢ with only 2 parameters: gla, b) «

f{a, &, b);
¢ Using std::band to set: auto g = wtd::bind{f, .1, 4, _2); where .1 {or 2} refers to the

hrst {or second) param in £. £ becomes a partal function of £ with the middle param preset
o atd: :bind is useful in vanous contexts including

Partal functions {or currying)
> Reordering parametars | Defining default parameters
Generalized function pomnter for callback and Passing functoes to STL algorithms

Placisde Castiess
"lazh

odn CPagct

clans MClase |

teld losgleonagf

ekl reralt

2oaL << raels|)

bk «

{TTEN i d.placedsilers: 1),
loaghseningFractina(rallbacy);
]
)
ot anini) (MyClase{) . lesghornisaFonctiandayne(); | .7
Prgrammey » s = b Praben im .~

® Sopposs we have a callable object £ with 3 parameters: £(a, b, c);

o We want a new fusction cbject ¢ with only 2 parameters: gla, b) = f{a, 4, b);

o g = wtd;:bindif, .1, 4, _2); where 1 (or 2} rebers to the
in £. £ becomes a partal function of £ with the middle param preset

::bind & useful in vancus contexts includng

Partial functions {er currying)

Reordermg parameters | Defining default parameters

Generalized function pomntar for callback and Passing functoes to STL algonithms

So, let us see, suppose you have a function with three parameters. And you want a new function
with two parameters, where the middle parameter here should be four. So, you want this, you
want. What you can do is obviously you can, you can write g and call this that is elaborate
mechanism. But what you can do can do std::bind f. And then say _1, 1 will mean the first

parameter of g which will be called.

Then the second parameter of f you keep as 4 fixed and the third parameter you passes _2, which
means the second parameter of g in future. So, now when we will call g 2 3, it will actually mean
acall, f 2, 4, 3. The first parameter comes here, and this order is arbitrary, you can put the first, I
mean _2 first 1. So. you can basically shuffle around the order of the parameters, you can make

certain parameters default, you can use it.

So, this bind basically makes it makes a very generalized to function pointer as a functor object.
And it is very useful in passing parameters to STL algorithms. So, here below you have a, | have
a simple example to show how it can be used as a as a callback. So, this is the callback type, you
remember the function component. So, | say void float result. So, it means it will take a float,

give me a void that is the type.

And | have a function that runs for a long time. So, what you do, you set another function call
back function, which basically will be called while this function has completed its task. So, call
back float result, which says this is the result. And that now, you wrap your long running

function into an asynchronous function. You bind the call back with this particular function with

a placeholder, which is _1, that is whatever you will give to call back as a parameter will go

there. So, that is a result comes out here, just try this out. This is could fun.

(Refer Slide Time: 23:47)

L

18 ats = 15, vold priet _seeiiot af, 107 83) | nd wat <4 alend < ')
it sain uing canespace std:cpl .

And in the next two slides, | have given different situations for bind, which you may just try out.

(Refer Slide Time: 23:51)

L

tWe¥; std::bind: Example
==

This is this is not code to thread programming, but I thought that bind is so widely used in terms
of creating function objects for threads that you should be more familiar with it. So, | have given

a detailed example for you to try.

(Refer Slide Time: 24:08)

L I I B A

',é" Race C & Data R
: s+ Race Londition & Data Race
X

Race Condition & Data Race

Now, so that is the basics of, what happens in terms of threads.

(Refer Slide Time: 24:16)

rpoRsang e

8] e ontin '
: s+ Race Londition & Data Kace
X

o We oftan talk about bugs in multi-threading:

Race Conditiow | /
Dty Race r 8" A
‘ \ L”(
o Are they same? 7
No, they are not

They are not a subset of coe another
They ate ako nesther the necessary, nor the sufficent condition for one another

o Race Conchition: A race condition is a semantic emror

A mace condition & a stuathon, in which the result of an oparation depends cm the
intereaving of certam indnidual cperations
Many raco conditions can be caused by data races. but this is not mecessary
o [Data Race A data race ocows whes 2 sstructions from difierent threads access the same

memary location without syachronization

0 A data race 18 2 situation, in which at Jeast two threads access a shared varable at the
same time. At least coe thread tries to moddy the varable
The discovery of data race can be automated

o Wa take oamples to dlustrate both
Pagomny ' Sedboe

But threads are a big boon in terms of it, enhances performance, it allows you to, keep on when
something is being done, and the system is busy with that you can still do something else in a
different thread and so on, but they do not come without a price. So, there are different problems
with threads. Now, the main is race condition and data race. So, these are talked about together.

So you might have thought that they are the same thing.

They are related, but they are not the same thing, not at all. A race condition is more like a
semantic error. A race condition is, is a situation where operations of multiple threads are kind of
mixed up interleaved, so that they are not producing the right result. That is a race condition.
And the data race is, when there is one single object, there are at least two threads, which are
accessing them.

And at least one of them is trying to write. If multiple threads read a value, there is no problem.
But if two or more threads try to read, write a value, at least one of them tries to write others
maybe reading, then you have a data race. Often data leads to race condition. But data race, but

test race condition may just happen by itself.

(Refer Slide Time: 25:37)

L R RN A LR o

Pt -
iﬁi Race Condition & Data Race: Race Condition Example

Race Condition & Data Race: Race Condition Example

So, let us take a race condition example.

(Refer Slide Time: 25:40)

eug ey

%1‘ E R OC' :dt
: s+ Exampie 1. Race Condition
=X

o Let us write a simple program to compute

I/’\’.I\‘ X x(20+1) x(2x20+1) 2870 /
=

b
\ /
sinclode <jostreas> __~
uwizg naemspace std;

0; i++) | square(i); |
T accum << endl;

o Assuming that xex is 2 heavy computation (fake it!) ket os write 2 simple multi-threaded
program for the above
> Spawn 20 threads
Each thread computes square for 3 distmct valoe
The accumulated resut i available 3%ter the threads jom

Suppose we want to do something very trivial, we want to work out the sum of squares, from 1
to 20. You know, this by this formula, this is what should happen if 1 square plus 2 square like
that. And how we do that? We have a function square, which squares the parameter and updates
a global accumulator. So, if I call square in a loop, one after the other, then the sum will get

computed. This is a sequential program.

Now, let us try to do this, let us, let us just for the sake of it, assume that x into X, let it be a very
heavy computation. So, | want to do them concurrently, when when 1 squared is being done, 2
square should be done concurrently, 3 squared should be done concurrently, and so on. They |
mean X into X is not certainly heavy, but | am just using as a representative. So, what we will do,
we will spawn 20 threads for 20 numbers, each thread will do the square for as much time it

takes and update the accumulator. So, at the end, | should get the result.

(Refer Slide Time: 26:52)

LR B S B A

e
L ‘ Xampie 1 ace Lonaition
=

Slaclude <loatrean
fixclode (wactor?
#iaclode <tiread> thread

UAANG aaseipace 2%

int actum = 0;

void squarsiist 2) |
WoCum += 3 v)

)

!

int maind) {
vector<thread>» tha;
Tor (ot 1 v 101 e 20; de¢) |

tha. penl backitas

sadikagqeare, 1)7;
e i e et

ta,Joinl),

for (autok tX : ths) “
)\

OFt €< " godm + * < peom <€ sad]]

Now, if I do that, so | have the thread version, there is no changes here. But here, what | do, |
make a vector of threads. And | push the 20 threads, each with a different value of i for the
function square. And | am just using a raw function pointer here. And I just put that in the vector,
create and push them. So, they are all in the vector. As soon as they are created, they start
working. And then | run over that vector to see if they have joined. So, this for loop will end
when all of these threads have joined. And once that is done, my result is ready, very simple

program.

(Refer Slide Time: 27:40)

L B N BN A A SR S

e
eWE¥: Exampie 1: Race Condition: Random Delay
==

o As we mecute the mult-threaded program, it seems to correctly g the result 2870

® Doss it? Abays? Can we be sure? =

o We noed to validate our assumption that xox = indeed 3 heavy computation, and on different
threads it may take different quanta of time

o To increase the heaviness of compatation of xex, we insert o delay between computation of
x+% and its accumulation M= L,

o To uimulate varying situations between threacs we randomize the delay

cié equare(ist x) | %J—-«i}/

st pegex;

L 3X,
td: iraedl) ¢catdlid> [
it delay « (inn){(deuble)utd; sand() / (double) (RASD_MAR)e 100);
std: ratliisecondal) <chrans>
atd::this_thread: !eleep for{std::chreao::ailliceconds(delay});

o We try again!
R

W a—

L R T R A A S U

P ,
iﬁ-{ Example 1: Race Condition: Random Delay

o As we seecute the mult-thresded program, it seems to corectly g the result 2870

o Doss it? Abays? Can we be sure?

o Wo noed to validate our assumption that xex = indeed a heavy computation, and on different
threads it may take different quanta of time

o To increase the heaviness of compatation of xex, we insert a delay between computation of
x+x and its accumulation

o Ta simulate varying situations between threads, we randomize the delay

rard %:1;&

int deluy = (at)((deubledutd: :rand() / (Asublel (RASD NAR)e 100);

o We try again!

So, now, will it work? The question is, will it work? So, you try it, you try it and it gives the
result 2840, 2870 at is suit. You keep on trying it and well, you always get the result. And you
are still thinking that well, is it, is it correct? Is it correct? Will this work? So, let us take two

things. One is that well, we had assumed that x into x is heavy, but we know that it is actually not
heavy.

So, let us make it heavier. So, what we can do, instead of doing accumulator plus equal to x into
X, let us compute x into x into some temporary. Let us sleep for a while and then add this
temporary to the accumulator. This sleep effectively increases the perceived load or perceived
computation time for x into X. So, that that way, | just make the load heavier by introducing a

delay.

And then | say that it will not be the same for all numbers, 1 into 1 and 7 into 7 may not need the
same amount of time. So, | just randomize, | put a random delay. So, what | do is | create a, |
create, | generate a random number between 0 to RAND_MAX and normalize it to 100. So, that
| get a random number between 0 to 100. And then | use that in the millisecond. So, some

occasion it will be 0 millisecond, on 1 millisecond or 100 milliseconds. And we try it again.

(Refer Slide Time: 29:28)

PP AT It LD

"él E Race Cond Random Del
eWe¥: Example 1: Race Condition: Random Delay
==

fat)({dagmlo)ntd: crupdl) / Cdundele) (RANDI NER)¢ 109);

thread: caleay fer{ntd: cchaens il Lancepata (daday))i

int sainl)
rectar<uiready the;

fer [lat § = | N; in)
tha. push bSechithread fsquare, 1)

|

fer (autak th | 1as) |

Now, so this is this is the total program, I am just so this is what you have done to put that
random delay, which is what we have just discussed.

(Refer Slide Time: 29:39)

L R S R A S U

Condition: Random Delay + Repeat

® As we execute the modified multi-threaded program with delays, it seems still to corectly gve
the result 2370

o We keep tryng. Running it cver 3nd over agam Lo be convieced of the comectness (somecse
tokd that thread programmng 5 tncky)

® VWhen we are almost certain of the correctness, suddenly on the 37 run, we get

15!
o War ¢ 3 computer error, False cbservation? We try another 100+ times and abways get 28700
o We decide we need to automate the runs

o We ram (trial) in a » an infsite loop

> We braak the loop if the trail fads to produce comect result

1at matol) |
int trial_csust = O;
do {

++tyial count;

acom = 0]

} shile {accuy == 2870); P20, 0% = 870 ipfiaite leopt!!
|
o Canect program will loop forever! But Murphy says: If anything can go wrong, it wi!

Prgrammey @ e w4 Vg Sen e

L S R A A L U

P
Lﬁ“- Example 1: Race Condition: Random Delay + Repeat

o As we execute the modified multi-threaded program with delays, it seems still to corectly gove
the result 2370
o We keep tryng. Running It over 3nd over agan to be convieced of the comectness (somecne
tokd that thread programmng s tcky)
® When we are slmost certain of the correctness, soddenly on the 37 run, we get 2845!
o Was it 3 computer error, False observation? We try another 100+ times and abways get 28700
o We decide we need to automate the runs
o We ram (trial) in a m an infste loop
> We braak the loop if the trail fads to produce comect result
1at maln() |
int tria)_ceust =

} shils Taccm gr0) Hie L ab T B i

A0 iefiatte leop'!!
|

o Comect program will loop forever! But Murphy says: If anything can go wrong, it will

Ryt vieR

r"" Pl
:ﬁ: Example 1: Race Condition: Random Delay + Repeat
=X

o Aswe execute the modified multi-threaded program with delays, it ssems still to corectly gve
the result 2370
o We keep tryng. Running it over 3nd aver agan to be convinced of the comectnes (somecoe
tokd that thread peogrammng 5 trcky)
o When we are slmost certain of the correctness, soddenly on the 377 run, we get 2845!
o War &t 3 computer error, False cbservation? We try another 100+ times and abways get 2870!
o We decide we need to automate the runs
o We ram (trial] in 2 m an infiste loop
> We braak the loop if the trail fads to produce comect result
1at maln() |
int trial_ocust @
do {
s+tyial count;
accus = 0

} while {accun == 2870); 192°%.. . 0% = 870 infiaite leopt!!

| D)

o Comect program will loop forever! But Murphy says: If anything can go wrong, it will

e a— M

Now, we say that, we again keep trying, it gives the correct result. | keep trying, keep trying, |
did this for 36 times | got to 2870. But on the 37th attempt, suddenly | got a result 2845. The
question is, what is the problem? Is it, is it a computer error or a false observation? So, I tried
100 more times, more than 100 times, but | always got to 2870. So, | realized that well, before |

can be convinced, | need to have some automated test for this.

| cannot just keep on every time, go to online gdb and run run run, run, getting mad. So, how can
| do an automated test? It is very simple, | will just put this whole stuff of, creating the vector of

threads, spawning the 20 threads and joining up the threads within a scope, so that they are all

localized, and put that in a do, do while loop. When have a trial count variable, every time it goes

through this loop, this whole run has happened once.

And that trial count is incremented. And how do | terminate the loop? | terminate the loop by
checking if the accumulator is 2870. If that accumulator is 2870, it is correct. So, then | will try
again. If it is not, then | will exit. But that means that if the program is correct, it will be an
infinite loop. Well, but then Murphy's Law says that, if anything can go wrong, it will. So, let us
see what we find.

(Refer Slide Time: 31:24)

PP ABI A LD

Fat ‘
iﬁi Example 1: Race Condition: Random Delay + Repeat

So with this, this is, again, the entire program, there is a random delay, and this is a repeat. And
since it might go on for a long time, what I do is every, after every 100 trials, | just print a
message on the console, that 100 trials done, 200 trials done so that, you know, | know that the

program is working, it is alive. And then | wait, if a wrong result would come.

(Refer Slide Time: 31:52)

L I R A A L o

Fa
iﬁ-{ Example 1: Race Condition: Random Delay + Repeat:

® Murghy is comeet!’. Every time we tun, the koop tresks after some trials [not very Srge in fact)
® Hurs e the first 20 runs [of sltple trials) Every timm thers s some trial whnch falls shoet of 2070

ek 8 2 gl coveaadiction &y Muphe's by

Murphy is correct. | did this for 20 times. And you can see this is the actual data | collected. So,
when | run this program for the first time in the 56th trial, it produces 2845. In the second trial,
second run, in the first trial itself, it produced 2806, and so on. In some cases it has taken second
1502 runs to produce a wrong result, but in every case, 20 cases it has eventually proved it. So,
there is something wrong about this. And if you look at all these values, you will see that these

values are less than 2870, all of them.

(Refer Slide Time: 32:38)

poRs s te vy

« Example 1: Race Condition: Analysis

¢ So what is gaing wrong? We have it 3 Race Condition
o When the compiler processes acom += x # x;, reading the current value of accux and

setting the updated value s not an atomic (meanng indivasdle) event. Let us re-wnite square
to capture this /
us xex \:’/
o Vo

o v 2 4 1 /
o Now, let us assume that ve working with only 2 threads {for 1 & 2). The threads an

Interleaved over tone and 3 possible sequence &

/ Thread 2°(132)

o We end up with accum a5 4, instead of the correct 5

o |t also makes clear why a wromg result wil abways be fess

® Let us now provide two solutions to the race conditicn preblem using
Mastax

o A
PR L

LR N A

r‘" *o t.
iﬁi Example 1: Race Condition: Analysis

¢ So what is gamg wrong? We have bt 3 Race Condition
o When the compiler * 1;, reading the current value of accux and
setting the updated value is not an atomy (meanng indivisdle) event. Let us re-wiite square
to capture this
e
scom v 2 4 4
o Now, let us assume that vee warking with only 2 threads [for 1 & 2). The threads an
Interleaved ower tone and 3 possible sequence &
£ < .
Tarend 2 (022 / ’
VoY &
~ p (praamy X W
/ A
£ \ / \—__,./ /
N’ W
wom * 2 ¢tV atexm 4
—
¢ We end up with sccum a5 4, instead of the correct 5
o |t also makes clear why a wromg result will shways be fess
o Let us now provide two solutions to the race conditicn problem using
Mestex
Ao o~
. nl,(',_ c

So, what is going on? So, to understand, let us you know, you know, split into the simple square
function as to what it is doing. So, what will the compiler do? Compiler has to multiply. So, the
code written is necessarily x * x. Now the compiler has to compute x turn x into a temporary has

to read the accumulator into another temporary.

And then add these two temporaries. And put in the accumulator. This is a basic process. So, let
us say | have two threads. And they are they are independent. So, they the order in which those
instructions are executing, are can interleave in any way. But at any cycle only or at any point,
the instruction of only one thread can execute because there is a, there is only one processor to

execute.

So, let us say if they are interleaved in this way that it first does this in thread two, then it does
this in thread one. So, in thread 2 t1 is 4, in thread 1 t1 is 1, then it does this. So, in thread 2, t2 is
0, because accumulator initially is 0. Then in thread 1, t2 becomes 0, because accumulator is 0.
Then it updates the accumulator. So, in thread by thread one accumulator becomes 1 and then it
does this, accumulator becomes 4.

But it should have been 1 + 4 5. So, you can see that the interleaving only because that both these
threads have in this process, started with a value of the accumulator which is known updated one,
and both of them have updated after that, because of this interleaving. And that is the sole

problem of having the incorrect result. And you can always see that it will always have a lower

result than what is expected. And that is what you have been seeing. And this is exactly what is
called the race condition.

(Refer Slide Time: 34:47)

L RN

» D ~
@ Race Condition o wata ndce. nace conuicion Example
P22y Solution by Mutex

Race Condition & Data Race: Race Condition Example:
Solution by Mutex

So, how to solve that? How to fix that? There are multiple solutions.

(Refer Slide Time: 34:51)

poTseug Ao L0

L@ Example 1; Race Cond ion: Solution by Mutex

o A mutex (mutual exlesion) allows us to encapsufate blocks of code that cheold only be
executed in one theead 3t 3 time. Keeping the man fuscton the same
12t accm = O
WiteX aocum sutex:

ot |
void squars(int x) | /

Int teap = x » J'J

g AOCIR_DTSX l S10A Jack accum_mitex
actum = te=p;

—paccum stex. uslock() Lok

|

o We try rennig the program repeatedly agam and the problem should now be fixed

o The fest thread that calls Lock() gats the lock

® During thes time, all other threads that call Tock(}, will wait at that ine for the mutex to be
unlocked Creates 2 Catical Section

® |t s important to introduce the vanable texp, smce we want the 1 » 1 caloslations to be
outside the lock-unlock block, ctherwise we would be hogging the lock while we are running
our heavy calculstions

Prgrammy o Moaee

So, | will just talk about two. One is solution by mutex. There is something like mutex that is
defined, which is in the mutex component. So, it is a mutex and give it a mutex variable name.

Then you do a lock on the mutex. If you do a lock on the mutex, what it does, it is an atomic

operation and what it does, the first thread that comes here will get the lock. And will be allowed

to go and do the next instruction.

But the second thread which comes to this point, will not get the lock because the lock has been
given to one thread. So, it is like having a unique lock, unique key. So, key, the thread which is
having the lock has not released it. Any other thread, all other threads will keep on waiting at this

point.

And when the thread which has the lock unlocks it, then one of these threads will get the lock
again. And that will start proceeding others will wait. So, this will make sure that at any point of
time, only one thread, will be able to read and write that monitor because this is both read and

write of the accumulator.

(Refer Slide Time: 36:06)

L B N RN A S U

'ré" E Race Condition: Solution by M
v Exampie 1. Race Condition: Solution by Mutex
=

And we put it in the solution very simply fully few lines I changed include this, have a mutex
and put this locks and then try again. Like our, our repeated trials with delay, if we do that, if we

try again and we will see.

(Refer Slide Time: 36:20)

LB L RS A L

: N
rﬁ‘, Race Condition o wata ndue: naue cunmaon Example #‘:
P 4+ &
A8y . 4=

Solution by Atomic

Race Condition & Data Race: Race Condition Example:
Solution by Atomic

| have waited up to 6000 runs of this and the program did not terminate, this is truly an infinite
loop.

(Refer Slide Time: 36:30)

L B S R A A S U

Fa .
@ Example 1: Race Condition: Solution by Atomic

o With Mutex the problem gats fiued. The program does not produce 3 wrong result even after
6000+ trials

o Interestingly, C+-+11 offers even mcer abstractions to solve this problem, For mstance, the
atomic contaner

#inclode <atomicy
———
AomIcCint> accunil); LIS

void squara(iat x) {
ACCum = x ¢
|
o We do not need to introduce temp here, since x » 1 will be evaloated befors haaded off 10
nccus, 30 it wil be outside the stomic event
o However, we will continue to show the solution using the temporary

And other way of doing this is using what is known as atomic container. Atomic is a specific
type of container, where whatever you put as an atomic container can be changed only by one

thread, not by others. So, you can just say atomic include this say atomic and things will get
done.

(Refer Slide Time: 37:00)

L B S R A A S U

SR
oe¥: Exampie 1 Race Condition: Solution by Atomic
2

Pagpemnng » Mo o5 Ve

And this is so just these two inclusion of this. And instead of a global declaration, you just say
atomic int. So, it gives you an atomic integer so that when it is trying to change the accumulator,
which is atomic, no other thread will be able to read or write into that. This also solves the

problem thread. We tried it 15,000 plus times and everything was okay.

(Refer Slide Time: 37:31)

o Introduced the notion of concurrent programming in C++11 using thread support

o Explored libeary support through std-:theead and std-;bind
o Exposed to the bugs in thread programming - race candition and data race

» Discussed examples of thread programs with bogs and ther solution

So, this is broadly the basic introduction to the thread programming and the race condition. We
will talk more about these in the next module, but we have got a sense of how to create threads,

how to run them how to join, how to bind functions, or functors to the thread and how to solve a

very simple problems of race condition using mutex or atomic. We will discuss more of these in

the next module. Thank you very much for your attention.

