Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 57
C++11 and beyond: Resource
Management by Smart pointers: Part 2

Welcome to programming in modern C++, we are going to discuss module 57.

(Refer Slide Time: 0:33)

PP QAEIlI O B

Programming in Modern C++

Module M57: C++11 and beyond: Resource Management by Smart Pointers: Part 2

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url’s in this module have been accessed in September, 2021 and found to be functional

Programming in Moder C++ Partha Pratim Das Ms7.1

r""" PPRLAHl e
0 /4

u‘ﬂ Module Recap

o Revisited Raw Pointers and discussed how to deal with the objects through raw pointer
o Introduced Smart pointers with typical interface and use
o Introduced some of the policies for smart pointer:

o Different storage policies
o Ownership Policies

Programming in Moder C++ Partha Pratim Das Ms7.2

In the last module, we revisited the raw pointers and discussed how to deal with objects
through raw pointers. And we have in a way, taking a look again at all the different problems
that raw pointers cause in terms of managing the dynamic resources, which cause the safety

issues as well as memory leak issues in C as well as C++ programs. Now, we introduced the

concept of smart pointers with the typical interface and use and discussed about some of the
policies.

(Refer Slide Time: 1:17)

PP Anlte

[ﬁ% Module Objectives

o To continue Discussions on various policies of smart pointers
o Ownership Policies
s o Implicit Conversion policy
o Null test policy

o To familiarize with Resource Management using Smart Pointers from Standard Library
o unique_ptr
o shared_ptr
o weak_ptr
o auto_ptr

Programming in Moder C+-+

rpPRBAEL PO T

ﬁé} Module Outline

© Module Su

Programming in Modem C4-

Partha Pratim Das. M574

We will continue on that and complete on the ownership policies and discuss other policies
and then take a look into the standard library support for C++ for smart pointers that are

useful for the resource management. These are the contents will be outlined will be available
on the left.

(Refer Slide Time: 1:38)

Sources:

@ Chapter 4. Smart Pointers: Effective Modern C++, Scott Meyers
O Item 18: Use std: :unique_ptr for exclusi hip resource
O ltem 19: Use std: : shared_ptr for shared hip resource

O ltem 20: Use std: :weak.ptr for std: :shared_ptr-like pointers that can dangle
O Item 21: Prefer std: :nake_unique and std: :make_shared to direct use of new
® The Rule of The Big Three (and a half) - Resource Management in C-++, 2014
[] r, wikipedia

. use C++ raw pointers properly?, Sorush Khajepor, 2020

® Whatisa C++ v

L}
L]

What is a C++ p
What is a C++ weak pointer and where is it used? smart pointers part Ill, Sorush Khajepor, 2021

Smart Pointers

Programming in Moder C++ Partha Pratim Das MS75

rj [- BB A A I R
ty?

EH Smart Pointers: Recap

Smart Pointers: Recap

Programming in Modern C++ Partha Pratim Das. M57 6

Now, before we start our discussion today, just let me quickly take a do a recap of what we

have done the key points.

(Refer Slide Time: 1:48)

r""q pPRE APl BN
0 7

L"J What is a Smart Pointer? (Recap Module 56)

o A Smart pointer is a C++ object
o Stores pointers to dynamically allocated (heap / free store) objects
o Improves raw pointers by implementing

o Construction & Destruction

o Copying & Assignment
o Dereferencing:

> operator->
> unary operator*

o Grossly mimics raw pointer syntax and semantics

]

Programming in Moder C++ Partha Pratim Das Ms7.7

The first smart pointer is a C++ object and it stores pointers to dynamically allocated objects.
So, it improves the raw pointers by implementing various strategies in its constructors,
destructor, copy and move assignments dereferencing operators and so on, but grossly
mimics the raw pointers syntax and semantics.

(Refer Slide Time: 2:13)

PPRBAHL O BN

{%;3} Typical Tasks of a Smart Pointer (Recap Module 56)

o Selectively disallows unwanted operations, that is, Address Arithmetic
o Lifetime Management

o Automatically deletes dynamically created objects at appropriate time
o On face of exceptions — ensures proper destruction of dynamically created objects
o Keeps track of dynamically allocated objects shared by multiple owners
o Concurrency Control
o Supports Idioms: RAII: Resource Acquisition is Initialization Idiom and RRID:
Resource Release Is Destruction

o The idiom makes use of the fact that every time an object is created a constructor
is called; and when that object goes out of scope a destructor is called

o The constructor/destructor pair can be used to create an object that automatically
allocates and initialises another object (known as the managed object) and cleans
up the managed object when it (the manager) goes out of scope

o This mechanism is generically referred to as resource management

Programming in Moder C++ Partha Pratim Das Ms78

The main highlights are that smart pointers disallow unwanted operations like address
arithmetic which is one of the biggest problem area for bugs, it allows the lifetime
management by managing the dynamically created objects according to the protocol of the

static objects which the smart pointers are helps in concurrency control and supports resource

acquisition is initialization and resource release is destruction idioms which help really the

resource management.

(Refer Slide Time: 2:53)

pPRB ATl BN

;%’é} Typical Smart Pointer Interface (Recap Module 56)

template<typename T> // Pointee type T
class SmartPtr {
public:

No implicit conversion from Raw ptr
explicit SmartPtr(T# pointee):
pointee_(pointee) { }

Smarti’tr(const SmartPtrg other);
ssignable
SmartPtrk operator=(const SmartPtré other);

“SmartPtr();
T& operator*() const { ... return *pointee_; }
T+ operator->() const { ... return pointee_; }
private:
T# pointee_; // Holding the pointee
b
Programming in Modern C++ Partha Pratim Das Ms7.9

So, this is the interface we had seen the constructor must be explicit, so that you cannot
convert raw pointers implicitly, we have copy constructor, copy assignment operator, but
most importantly, you have overloaded unary operator *, dereferencing and indirection
operators.

(Refer Slide Time: 3:14)

r"" PPRB QL BN
3

u’ﬂ The Smartness Charter (Recap Module 56)

o It always points either to a valid allocated object or is NULL
o |t deletes the object once there are no more references to it
o Fast: Preferably zero de-referencing and minimal manipulation overhead

o Raw pointers to be only explicitly converted into smart pointers. Easy search using grep
is needed (it is unsafe)

o It can be used with existing code

o Programs that do not do low-level stuff can be written exclusively using this pointer.
No Raw pointers needed

o Thread-safe

o Exception safe

]

o |t should not have problems with circular references

o Programmers would not keep raw pointers and smart pointers to the same object

Programming in Mode C++ Partha Pratim Das Ms7.10

And we looked at the basic charter of things that the smartness that the smart pointers must
have primarily being that it will either point to a valid object or it will be null, it will not be

able to point to an invalid object and once it is deleted, the object that is being pointed to or
managed by this smart pointer must also be deleted. So, and then there are many others like it

must be useful with the existing code, thread safe, exception safe and so on, so forth.

(Refer Slide Time: 3:52)

PPRBAHL O BN

E@E Policies (Recap Module 56)

o The charter is managed through a set of policies that bring in flexibility and leads to

different flavors of smart pointers
o Major policies include:

o Storage Policy
o Ownership Policy
o Conversion Policy
o Null-test Policy

Programming in Moder C++

Partha Pratim Das M57.11

=
fi

F
PN

Exclusive Ownership

o Exclusive Ownership Policy

o Transfer ownership on copy

¢ On Copy: Source is set to NULL

o On Delete: Destroy the pointee Object

® std::auto_ptr (3), std: :unique_ptr
o Coded in: C-Ctor, operator=

Programming in Modem C++

PPRB ATl tO BN

Ownership Policy: Exclusive and Shared (Recap Module

Shared Ownership

® Shared Ownership Policy

o Multiple Smart pointers to same pointee

® On Copy: Reference Count (RC) incremented

® On Delete: RC decremented, if RC > 0.
Pointee object destroyed for RC = 0

® std::shared ptr, std: :weakptr (11)

o Coded in: Ctor, C-Ctor, operator=, Dtor

Partha Pratim Das M57.12

pPRLAHILI O T

Ownership Policy: Exclusive and Shared (Recap Module

o o B oou—p
pRefCout_ relCount_=3
. poriee_ B ponce. 3 o
ol AN o i "
{ Extra indirection & non-intrusive counter L o
pRefCount_
7 3 I
—| f — p—
! poiniee_ -+
pRefCount_ o 7 ¥
. peintee_ prov..| ned
Extra pointer & P oo || .
non-intrusive counter y , pree—— Reference linking
pointee.
) Intrusive counter
® Non-Intrusive Counter ® Non-Intrusive Counter ® Reference Linking

O Addl. count ptr per 0 Addl. count ptr removed 0 Overhead of two addl. ptrs
smart ptr O But addl. access level means slower speed 0 Doubly-linked list for constant

O Count in Free Store o likiiisbés Cauib time:

O Allocation of Count S S b Féi: Aéiid. ‘R L
may be slow as it is too O Most optimized RC smart ptr E°’ p:en - Remove
small (may be improved O Cannot work for an already existing design mpty detection
by global pool) O Used in Component Object Model (COM)

Programming in Moder C++ Partha Pratim Das Ms7.13

And we have looked at the storage policies and some of the ownership policies, in terms of
the ownership policy, we have learned the two basic types of ownership that is, that could be
exclusive ownership, wherein a smart pointer owns an object, a managed object in an
exclusive manner. So, that if it is copied to another smart pointer, then that particular
ownership will get transferred to the new copy and this pointer will become null.

So, this is exclusive ownership and naturally, if you delete and exclusive ownership smart
pointer, then the pointee object will also get destroyed. The other is a shared ownership
policy where multiple smart pointers can manage or can point to the same object. And so

when you copy, a reference count goes up.

When you delete, the reference count goes down and when the reference count becomes 0,
then that managed object is deleted. So, in different constructor, copy constructor and
operators copy operators are where the strategies are implemented and we saw a variety of

different possible strategies for implementing the particularly the shared ownership policy.

(Refer Slide Time: 5:15)

r""1 PR AHL PO T
ty

EH Smart Pointers: Ownership Policy

Smart Pointers: Ownership Policy

Programming in Modern C++ Partha Pratim Das Ms7.14

pPRsQE gl tO 0N

= I |
% Ownership Policy: Reference Management: Shortcoming

Fa
L

¥ | id

o Circular / Cyclic Reference

o Object A holds a smart pointer to an object B. Object B holds a smart pointer to
A. Forms a cyclic reference 7

> Typical for a Tree: Child & Parent pointers 0
o Cyclic references go undetected

> Both the two objects remain allocated forever
> Resource Leak occurs ; /b/ /

o The cycles can span multiple objects

Programming in Moder C++ Partha Pratim Das Ms7.15

Now, moving on from this on the ownership policy, exclusive ownership is fine. So, when
you have only one pointer that can point to an object like say in a single linked list and so on,
then you do not have a problem, but when you have shared policy, then you have more than
one pointer can point to the same object then there is comes a question of circular reference
or cyclic reference, the idea is simple if I have an object which is pointing to another object,
now, if this object also points back here.

Now, the question is this has a smart pointer pointing to the object a as a smart pointer
pointing to b, object b has a smart pointer pointing to a. Now, if I try to delete object a, then |
cannot do that, because 1 it is pointing to a valid object the reference count is more than one. |

cannot delete b either, because it is pointing to a valid object a, the reference count is one.

So, if there is a circularity, then I will not be able to delete any of these objects. So, these
objects will remain there forever. And it is so resource leak will happen. So, circularity of

references cause a problem in terms of the shared ownership policy.

(Refer Slide Time: 6:53)

pPRsQEdte L EDN

E@E Ownership Policy: Cyclic Reference: Hack

N
[nooE |
//\‘- "’J’\a
/ /‘/ \‘ \
A X %

\ \

(nooE |

‘r‘""’ ,r“”’ \\ \\

W \
1 NODE [/ \Wi NODE |
‘ 4 P

er (std: :shared_ptr) from Parent to Child: Data Structure Pointers
iter (std: :weak_ptr) from Child to Parent: Algorithm Pointers

Programming in Moder C++ Partha Pratim Das M57.16

For example, think about this, you will not be able to delete any of these five nodes, because
there is always more than one here, which are being pointed to. So, to take care of that, what
is done is we introduced two different types of pointers. One is called a shared pointer.

For example, if | can show you with certain colors, let us say this is a shared pointer, this is a
shared pointer, this is a shared pointer, and said this is a shared pointer. A shared pointer is
basically a pointer of the data structure which holds the structure together. The other ones, we

considered to be a different kind of pointer.

We just mix it references back to some node, but really not owning the node. So, smart
pointer owns the other type, we call it the weak pointer and smart is not a good word,
observes, is some smart pointer holding this object or not. But the fact that a weak pointer is
pointing to an object is not a restriction for that object to be deleted, whereas if a smart

pointer is pointing to it, then that object cannot be deleted.

(Refer Slide Time: 8:23)

pPRsQE Lt 0N

ﬁéj Ownership Policy: Cyclic Reference: Solution

o Maintain two flavors of RC Smart Pointers
o Strong pointers that really link up the data structure (Child / Sibling Links). They
behave like regular RC. std: : shared ptr
> These are Ownership pointers
o Weak pointer for cross / back references in the data structure (Parent / Reverse
Sibling Links). std: :weak ptr % é'y/
> These are Observer pointers S\\ @‘_,\———/O
o Keep two reference counts:
g\&
0

o One for strong pointers, and

\2
o One for Weak pointers (b\ éx‘)

o While dereferencing a weak pointer, check the strong reference count:
o If it is zero, return NULL. As if, the object is gone

Programming in Moder C++ Partha Pratim Das Ms7.17

pPRBAEL e

Smart Pointers: Conversion Policy

Smart Pointers: Conversion Policy

Programming in Modem C4- Partha Pratim Das Ms7.18

So, this is the simple trick that is introduced. So, often, the smart pointers or the strong points
are really the links in the data structure. Whereas the weak pointers are primarily the
algorithm pointers, they just observed. They just keep track. Now so how do you keep track
of whether there is a smart pointer or there is a whether there is a strong pointer or whether it

is a weak pointer and so on.

So, instead of one reference count, which we are having earlier, now, you have two reference
counts, a strong pointer count and a weak pointer count. So, strong pointer count tells you
that how many pointers are owning this object. So, | can have an object, | can have multiple

smart pointers, which are pointing to it sp2 multiple smart pointers are pointing to that.

So, as long as all of these smart pointers exist, at least up to one smart pointer exists, this
object cannot be deleted. I also have weak pointers. | also have weak pointers pointing here.
The weak pointer does not own it is just keeping track whether there are smart pointers which
are pointing here. So, a weak pointer, but it is pointing to the object in a certain way. Now but
since it is not owning it, even when a weak pointer is pointing to an object, that object can be
deleted.

And because it is pointing to the object, it can serve as the purpose of referring to that object,
I can use this pointer and in some way there are restrictions, but in some way | can access that
object. This is the basic idea. | am not going into the details of the implementation, but this
basic idea, if you keep in mind that will be fine. The next is a, so, we have the storage policy,

we have ownership policy.

(Refer Slide Time: 10:39)

pPRsQE Lt L UED

[g%j Implicit Conversion Policy

o Consider

A

void Fun(Something* p)}/... // For maximu
\/martPtKSomething) (new Something);

Fun(sp) ; 0K or error7

o User-Defined Conversion (cast) 4

template<typename T>class SmartPtr { public:
operator T#() T return pointee_; } // user-defined conversion to T#
i S——
o Pitfall: This following compiles okay and defeats the purpose of the smart pointer

SmartPtr<Something> sp; ... // Undetected semantic error at compile time
delete[sp;

o No conversion allowed in library. No operator T*() const noexcept; is even provided.
Use get () to obtain the raw pointer from unique_ptr or shared ptr

Programming in Moder C++ Partha Pratim Das MS7.19

The next is what is known as a conversion policy. Conversion policy says something very
simple if I have a smart pointer. So, what do | have? | have a smart pointer. So, basically an
object which insight, we have a raw pointer, which is actually holding that object. This is the
structure. Now, if | have a smart pointer, then can | convert it to its raw pointer, for example,

just look at something in some class.

So, I have defined a function Fun which takes a raw pointer to something and have defined a
smart pointer sp to this allocation, which is a smart pointer to something. Now, the question
is, is this call allowed? If you look at the type, the type of the formal parameter is something

* whereas that is pointed to something whereas the type of the Fun is a smart pointer that it is

an object where it is a C++ object where the dereferencing and indirection operators have

been overloaded.

The question is should this be allowed, as such they should not be allowed because they are
of different types. So, this can be allowed provided a smart pointer by default can be
converted to a raw pointer. So, how will that happen, that means there has to be a conversion.
Now, since it is to be converted to a raw pointer, which is built in type, we cannot make use

of the constructor of the built in type to do this conversion as we have learned.

So, if this has to be allowed, then the smart pointer class has to provide a conversion operator.
So, say it provides an operator T* where T is a, so, if this operator is also provided, then what
will happen, if | pass it a pointer of pointer sp of the smart pointer T type, then it will
automatically return the internal pointee, return this internal pointee and give me the raw

pointer.

So, if I provide this, then this conversion will be allowed. That is good. But there is a big
problem. The problem is suppose I have a smart pointer sp. And suppose | have written delete
sp, it is a mental over it, because pointers we delete. Now, delete sp should not be allowed,
because sp actually is an object, it is not a dynamically allocated pointer on which you can

call the delete operator.

So, delete sp should have given me a compilation error, but it will not, it compile fine
because the compiler finds that sp is of type smart pointer, which has a conversion to the raw
pointer. So, it will do the conversion, get the raw pointer and delete that. Something which is

semantically wrong and compiler should have given an error does not give an error.

(Refer Slide Time: 14:13)

L2 B

["H Implicit Conversion Pohcy

o Consider

void Fun(Something* p); ... r maximum compatibilj

SmartPtr<Something> sp(new Somethmg)

Fun(sp) ; ror A
i c.

o User-Defined Conversion (cast)

\/ X template<typename T>class SmartPtr { public:
Y operator T#() { return pointee_; } // user-defined conversion tc
. Pitfall: This following compiles okay and defeats the purpose of the smart pointer
martPtr<Something> sp;
delete sp; Compiler passes this by casting to raw pointer
e

o No conversion allowed in library. No operator T*() const noexcept; is even provided.
Use get () to obtain the raw pointer from unique_ptr or shared ptr

Programming in Modem C++ Partha Pratim Das Ms7.19

So, the conversion implicit conversion is not a good idea. There are different there could be
different ways of providing the conversion and then my blocking it for example, we have
learned about explicit keyword for making the conversion operators explicit you could use
that, if you use that then again it will not be this will not this problem will go away because

this will not compile. So, this will also not compile.

So, it will then have to write static_cast<T*> then or something * then sp because it is
explicit you. So, this syntactic beauty will in any case go away or it could if you are working
in C++03 where you do not have the explicit keyword The other trick or hack that you can do

that you can provide another operator conversion operator void*.

If you do not explicitly is the preferred, if you do not have you can alongside operator T* you
can provide operator void star then also what will happen the implicit conversion will not be
allowed because these two overloads will not be resolvable so, the compiler will see that | do
not know only explicit ones will be. So, whether they do it by this mechanism of C++11 or
do it by this hack of C++03, | have to, to avoid such risks, I have to use an explicit

conversion in this way.

(Refer Slide Time: 16:08)

PPl aEdte .

["H Implicit Conversion Policy

o Consider

void Fun(Something* p); ...
SmartPtr<Something> sp(new Somethmg)

Fun(sp); // OK or error /&}‘0\
i \
o User-Defined Conversion (cast) w

template<typename T>class SmartPtr { public:
operator T#() { return pointee_; } // user-defined conversion to T#
ks

o Pitfall: This following compiles okay and defeats the purpose of the smart pointer

SmartPtr<Something> sp Undetected semantic error at compile time
delete sp; asses

o No conversion allowed in library. No operator T*() const noexcept; is even provided.

Use get () to obtain the raw pointer from unique_ptr or shared_ptr
S—

Programming in Modern C+-+ Partha Pratim Das M57.19

Now, so, the language committee while discussing deliberated over that and said that if this
has to be done, then it is better that the user says that | am doing it. So, it does not provide
any conversion operator, smart pointers in the standard library does not have a conversion
operator rather it gives you a function member function get() by which you can get this raw
pointer simple. So, if you have to write this, you have to write this as Fun(sp.get()) and that
will get you the raw pointer, of course, this is much less cumbersome looking and less typing
compared to the static cast. So, this is what is available for the unique pointer and the shared

pointer.

(Refer Slide Time: 16:55)

[R-E RN A

ﬁ Smart Pointers: Null-test Policy)

Smart Pointers: Null-test Policy

Programming in Modern C++ Partha Pratim Das Ms7.20

@ PP AEd e

u.‘ Null Test Policy

L

o How to check if the smart pointer is null? Expect the following to work?

SmartPtr<Something> spi, sp2;
Something* p; ...

if (spt)
if (!sp1)
if (sp1 == 0)

o Without implicit conversion to to raw pointers, these cannot work

o Overloading bool operator!() { return pointee_ == 0;,} would pass Test 2, would
need Test 1to be written as if (1Tsp), and fail Test 3

o The library provides explicit operator bool() const noexcept; for the purpose in
unique_ptr and shared_ptr

o Test 1, Test 2 and Test 3 work

Programming in Moder C++ Partha Pratim Das Ms7.21

This next question is null test policy we often check pointers for null. So, given a smart
pointer would | be able to do these checks this is we check if it is not null, if it is null, if it is
equal to explicit check and so on. This is a very common way of checking, naturally since we
do not have an implicit conversion this will not be possible, because obviously these are
objects so, they do not have a mapable operator. So, one way you can make it work is you
can overload the negation operator and say the negation operator checks for equality of the

pointed to 0.

(Refer Slide Time: 17:38)

PP QEste

[gé} Null Test Policy

o How to check if the smart pointer is null? Expect the following to work?

SmartPtr<Something> spi, sp2;
Something* p; ...

if (sp1) /
if (!sp1)

if (sp1 == 0)

o Without implicit conversion to to raw pointers, these cannot work
o Overloading bool operator!() { return pointee. == 0; } would pass Test 2, would
need Test 1 to be written as if(!!sp), and fail Test 3
o 3 = TR . 5
o The library provides explicit operator bool() const noexcept; for the purpose in
unique_ptr and shared_ptr

o Test 1, Test 2 and Test 3 work

Programming in Modern C-+-+ Partha Pratim Das Ms7.21

If you do that then naturally this will work is the case the test 2 will work, test 1 will still not

work because the negation operator does not get invoked. So, test 1 you will have to write it

in a peculiar way like if bang bang sp. So, negation twice it makes it and test 3, you cannot

make it pass.

(Refer Slide Time: 18:00)

| 2 SR O R

{%% Null Test Policy

o How to check if the smart pointer is null? Expect the following to work?

SmartPtr<Something> spi, sp2;
Something* p; ...

o Without implicit conversion to to raw pointers, these cannot work

o Overloading bool operator!() { return pointee_ == 0; } would pass Test 2, would
need Test 1 to be written as if (!!sp), and fail Test 3

o The library provides explicit operator bool() const noexcept; for the purpose in
unique_ptr and shared_ptr ‘

o Test 1, Test 2 and Test 3 work

Programming in Moder C++ Partha Pratim Das Ms721

So, again through consideration what the language committee has provided, instead of doing
all this it has provided a explicit conversion to bool which is a very specific one, which is
explicit operated bool and that if you have an explicit conversion to bool then in the context
of such tests, the explicitness is not considered this particularly for operated bool, if you do
not remember please go back and see the discussion on the explicit. So, explicit operator bool
is provided in unique pointer and shared pointer, so, that all of these three tests will work. So,

that is the null test policy.

(Refer Slide Time: 18:50)

pPRBAHIL Lt

[ﬁé} Resource Management

Sources: Py

@ Chapter 4. Smart Pointers: Effective Modern C++, Scott Meyers
O ltem 18: Use std: :unique_ptr for exclusi hip resource
O Item 19: Use std: :shared_ptr for shared: hip resource

O ltem 20: Use std: :weak.ptr for std: :shared_ptr-like pointers that can dangle

O ltem 21: Prefer std: :make_unique and std: :nake_shared to direct use of new
® Smart Pointer in C++ Standard Library

O std::unique_ptr, cppreference

O std::shared_ptr, cppreference

O std::wveakptr, cppreference

O std::auto_ptr, cppreference
@ The Rule of The Big Three (and a half) - Resource Management in C++, 2014

Resource Management

Programming in Moder C++ Partha Pratim Das Ms7.22

pPRsAEd te

g?] Resource Management

Fa
L

o Smart pointers enable automatic, exception-safe, object lifetime management

o The various Pointers are:

o shared_ptr: smart pointer with shared object ownership semantics
o weak_ptr: weak reference to an object managed by std: :shared_pt
o auto_ptr: smart pointer with strict object ownership semantics "

N

o unique_ptr: smart pointer with unique object ownership semantics
r

o All these are Defined in header <memory>

o First three pointers are included in C+-+11 where as last one is as in C

Programming in Moder C++ Partha Pratim Das Ms7.23

So, having said that, now, let us quickly take a look at what are the different smart pointers
we have, there are four kinds unique pointer which is exclusive ownership, destructive copy,
shared pointer, which shares the ownership, weak pointer, which refers to an object managed

by some other shared pointer, so that the cyclic reference can be avoided.

So, these are the three smart pointers which are critical for the study, you do have a pointer,
smart pointer called auto pointer, which exists in C++03. But, so, we will we have included it
but it is deprecated in C++11 and in C++17 this has been completely removed. So, unless you
are restricted to use C++03 only do not use the auto_ptr. All of these are available in the

memory component of the library.

(Refer Slide Time: 19:48)

PP BAEL SO T

E:éé} Resource Management: std: :unique ptr

Resource Management: std: :unique ptr

Sources:

® std::unique_ptr, cppreference

Programming in Modern C++ Partha Pratim Das Ms7.24

PP QAHI L T

[%ij std::unique ptr

Managing a sing t. Deleter may be use supplied or default delete
template<typename T, typename Deleter = std::default_delete <T> >

class unique_ptr;

anaging an array or object
template<typename T, typename Deleter>
class unique_ptr<T[], Deleter>;

o |t retains sole ownership of an object through a pointer and destroys that object when the
unique_ptr goes out of scope =
o No two unique_ptr instances can manage the same object
o The raw pointer to the managed object can be obtained by get ()
o The object is destroyed and its memory deallocated when:
o The managing unique_ptr object is destroyed, or
o The managing unique_ptr object is assigned another pointer via operator= or reset ()
o The ownership can also be relinquished by release() which returns the raw pointer of the
managed object

Programming in Modern C++ Partha Pratim Das M57.25

So, what is a unique pointer, unique pointer is simply that at any point of time it holds a
single object, if you copy, the ownership transfers as simple as that. You have a get() to get
the raw pointer, if you destroy the unique pointer, then that object being managed also get
destroyed if you assign it to other unique pointer, the object gets transferred, if you reset the
unique pointer, then also the object is destroyed. So, these are the different features the

unique pointer has.

(Refer Slide Time: 20:23)

PPRLAHL SO LT

std: :unique_ptr

o The object is destroyed using a potentially user-supplied deleter by calling Deleter (ptr)
o A unique_ptr may alternatively own no object (managed object pointer is nullptr), in which
case it is called empty
o There are two versions of std: :unique_ptr:
o Manages the lifetime of a single object (for example, allocated with new)
0 Manages the lifetime of a dynamically-allgcated array of objects (for example, allocated
with new(])
o Typical uses of std: :unique_ptr include:
o exception safety to classes and functions that handle objects with dynamic lifetime, by
guaranteeing deletion
o ownership of uniquely-owned objects with dynamic lifetime into functions
o ownership of uniquely-owned objects with dynamic lifetime from functions
o element type in move-aware containers, such as std::vector.

Programming in Modem C++ Partha Pratim Das Ms7.26

One special thing about unique pointer is unique pointer can also be created to an array of
dynamically allocated array of objects. So, it can be to a single object or a dynamically
created array of objects, it has a complete exception safety and all the kinds of assignment

and copy problem, exception path problems we had talked off, they will get solved by this

use of unique pointer, it is used to pass parameters to functions to get values returned from

function.

And several containers use unique pointer like in like | have a vector. So, in a vector, as you
have, we have discussed that it is an kind of array of pointers where the, but every element is
held through a pointer. So, those are all can be unique pointers, because obviously every

pointer will hold only unique element that exists there.

(Refer Slide Time: 21:26)

L S A R I AR S

std: :unique_ptr: Example

#include <iostream>
#include <memory>

struct Foo {
Foo() { std::cout << "Foo::Foo\n"; }
“Foo() { std::cout << "Foo::"Foo\n"; }

void bar() { std::cout << "Foo::bar\n"; }

void f(const Foo &) { std::cout << "f(const Fook)\n"; }
int main() {
std: :unique_ptr<Foo> pi = std::make_unique<Foo>(); ++14) p1 owns Foo Foo: :Foo

/ std::unique_ptr<Foo> pi(new Foo); N ++11) p1 owns Foo. // Foo::Foo
td: sunique.ptr if (p1) p1->bar(); /7 Foo::bar
{
std: :unique_ptr<Foo> p2(std::move(p1)); // now p2 owns Foo

£(*p2); // f(const Fook)
pl = std::move(p2); wnersh

1p r
std::cout << "destroying p2...\n"

eturns to pl
H destroying p2...

if (p1) p1->bar(); // Foo instance is destroyed when pl goes out of scope. // Foo::bar
} // Foo::"Foo

Programming in Moder C++ Partha Pratim Das Ms7.27

So, most useful, kind of pointed, here I have given a sample program, which you can execute
and see that the basic behavior of ownership transfer is happening properly. So, for example,
you create a unique pointer, you instead of writing this, I am sorry, instead of writing this you
can also write this new Foo and use that to initialize a unique pointer. That is a C++11 style
of initializing the unique pointer. C++14 gives you something nice it gives you a STL
function make_unique and you can create unique pointer through that and you should

actually always use that.

(Refer Slide Time: 22:15)

pPRs s te

[ﬁéj std: :unique_ptr: Example

#include <iostream>
#include <memory>

struct Foo {
Foo() { std::cout << "Foo::Foo\n";
“Foo() { std::cout << "Foo::"Foo\n"; }

void bar() { std::cout << "Foo::bar\n";

b

void f(const Foo &) { std::cout << "f(const Fook)\n"; }

int main() {

std: :unique_ptr<Foo> p1 = std: :make_unique<Foo>();
std: :up ptr<Foo> pi(new Foo);

if (p1) §1->i7ar(); Foo: :bar

std: :unique_ptr<Foo> p2(std::move(p1));

£(*p2); // f(const FGok) =

PT = std: :move (p2) ;

std::cout << "destroying p2..

if (p1) p1->bar(); // Foo instance is destroyed when

} // Foo::"Foo

Programming in Modem C++

/ Foo: :Foo

Foo: :Foo

Foo: :bar

Ms7.27

So, pl is a unigue pointer to a to an instance of Foo. So, if you do Foo pointer bar, then it will

execute this bar function. If you move this unique pointer p1 to another unique pointer p2 can

see a steady move for the purpose of making sure that you take the move semantics, if you do

that move, then certainly the ownership will go to p2. So, now if you do start of this in f, you

will get this because it now owns that Foo object, if you make an assignment, the ownership

will come back and so on. So, you can create two lessons.

(Refer Slide Time: 23:07)

PPRBLINL SO T

[;ﬂ;j Resource Management: std: :shared ptr

Resource Management: std: :shared ptr

Sources:

® std::shared.ptr, cppreference

Programming in Moder C++

Ms7.28

L N B B A A RS

{%éj std: :shared ptr

template<typename T> class shared ptr;

o |t retains shared ownership of an object through a pointer. Several shared_ptr objects may
own the same object

o Object is destroyed and its memory deallocated when either of the following happens:
o the last remaining shared_ptr owning the object is destroyed
o the last remaining shared_ptr divning the object is assigned another pointer via

operator= or reset ()

o The object is destroyed using delete-expression or a custom deleter that is supplied to

shared_ptr during construction
Bee ¢ The raw pointer to the managed object can be obtained by get ()

o We can get the number of managed objects by invoking use_count ()

o A shared_ptr can share ownership of an object while storing a pointer to another object

o [t may also own no objects, in which case it is called empty

o All specializations of shared_ptr meet the requirements of CopyConstructible,
CopyAssignable, and LessThanComparable and are contextually convertible to bool

Programming in Moder C++ Partha Pratim Das Ms7.29

Next is the shared pointer. That is the most interesting, the shared pointer is a pointer which
can where multiple pointers can point to the same object in a shared collaborative manner.
And the object managed object gets destroyed only when the last shared pointer pointing to

that is being destroyed.

Others as long as there are shared pointers remaining who are managing that object, other
shared pointers can be destroyed without destroying this object. Of course, you can if you
assign also the ownership gets transferred, ownership get copied basically not transferred
here, ownership get copied. So, the reference count will increase if you reset then it will get

released.

You can get the, we mentioned it you can get the raw pointers using get. And at any point of
time, you can do a use_count() to know how many smart pointers are pointing to this object.
That is you can get the value of the reference count. So, that is a very nice design.

(Refer Slide Time: 24:24)

pPRBAELl e

std: :shared ptr: Example

#include <iostream>
#include <memory>
using namespace std;
int main() {
shared_ptr<int> p1 = make_shared<int>();

*pl = 78; Set a vaTe YOr the m

cout << "pl =" << *pl << endl;

cout << "pl RC = " << pl.use_count() << endl;

shared_ptr<int> p2(p1); // Second shared_ptr p

cout << "p2 RC = " << p2.use_count() << endl; /

cout << "pl RC = " << pl.use_count() << endl;

if (p1 == p2) { cout << "Same objects\n"; } trs: Same object
td: :shared ptr cout<< "Reset pl " << endl; Reset pl1

pl.reset(); shared_ptr - it wil to any object

cout << "pl RC = " << pi.use_count() << endl; pLRC =0

pl.reset(new int(11)); Reset the shared_ptr with a new Pointer

cout << "pl RC = " << pi.use_count() << endl; =1:p1 RC=1

pl = nullptr; n nullptr to de-attach managed object

cout << "pl RC = " << p1.use_count() << endl; =0:p1 RC=0

if ('p1) { cout << "p1 is NULL" << endl; } // Test pointer: p1 is NULL

P}rogmmmmg in Modern C++ Partha Pratim Das M57.30

Again, another sample program which shows you various different ways of dealing with the
shared pointer, shared smart pointer. Like unique here you have other STL function
makes_shared to construct a shared smart pointer. Now these whether you are doing
make_unique or you are doing make_shared, this basically follow this RAIl because you can
see that you have not even done a new, you did not even required to do new that is done from

inside this.

So, when you do not even get to see the raw pointer that got created in the dynamic
allocation, so, the difference you could have done, for example, here you could have written
like this p1 new and int, you could have written this. If you are doing this then new int, which
is an rvalue a temporary object is at least you can see that that is identity of the raw pointer.
And then that raw pointer is being owned by p1, which is the shared smart pointer. But if you
do make_shared, then you do not even get to see that so resources acquired and immediately

initialized into the shared smart pointer.

(Refer Slide Time: 25:54)

pPRsaEste

std: :shared ptr: Example

#include <iostream>
#include <memory>
using namespace std;
int main() {
shared, ptr<1nt> pt = make shared<mt>()
*pl = 78; lue for th e
cout << p1 =" << ¥pl << endl;

shared_ptr<int> p2(p1);

cout << "p2 RC ="K p2.use count() « endl;. [
cout << "pl RC = " << pl.use_count() << endl;
if (p1 == p2) { cout << "Same objects\n"; }

cout << "p1 RC = " << pl.use_count) <« endl;

2
:pLRC=2

td: :shared ptr cout<< "Reset pl " << endl; Reset pl

pl.reset(); he shared t bject
cout << "pl RC = " <« pl use_ coun'c() <« endl pl RC = 0 :
pl.reset(new int(11)); 77 Reset the shared_ptr with a new

cout << "pl RC=§ << pl use cou.nt() <« endl =1 pl =1
pl = nullptr; g tach manag je

cout << "p1 RC = " « pl use count() << endl; =0:p1 RC=0
if (!p1) { cout << "pi is NULL" << endl; } nter: pi is NULL

}

Programming in Moder C++

Partha Pratim Das

. 2 RC =

trs: Same obJec:

M57.30

So, you can have this, like you do in a typical raw pointed way, you can set a value, you can

print that value, you can see how many are pointing to this, right now it is one, you do a copy

construction of the shared pointer, the count will go up to two, both of them both in pl as

well as in p2, now two pointers are pointing.

So, if you take a look share count for pl, as well as share count for p2, both will look to be

two because the count is of the total number of shared pointers that are pointing to this object.

And so on so forth. If you do reset, then the object will go, use count will fall back to zero.

You can reset and in that process set a new object. Not a very good idea, though, and so on,

so forth. So, that is a shared pointer use.

(Refer Slide Time: 26:56)

PPRLAHL LS T

W Resource Management: std: :weak ptr
il e

3

Resource Management: std:

Sources:
® std::weakptr, cppreference

Programming in Modern C++

:weak ptr

Partha Pratim Das

M57.31

PP QEd o

[ﬁ%‘ std: :weak ptr

template<typename T> class weakptr;

o It holds a non-owning (weak) reference to an object that is managed by std: :shared ptr

o |t must be converted to std: :shared_ptr in order to access the referenced object

o std: :weak_ptr models temporary ownership: when an object needs to be accessed only if it
exists, and it may be deleted at any time by someone else

o |t is used to track the object, and it is converted to std: :shared_ptr to assume temporary
ownership

o We can get the number of managed objects by invoking use_count ()

o To check if the managed object is already deleted we can call expired()

¢ Also, lock() can be used to creates a shared_ptr from a weak_ptr to manage the referenced
object

o |f the original std: : shared_ptr is destroyed at this time, the object’s lifetime is extended until
the temporary std: :shared_ptr is destroyed as well

o Note: It is used to break circular references of std: :shared_ptr. It cannot be used to access
the managed object

Programming in Moder C++ Partha Pratim Das Ms7.322

Coming to the weak pointer, weak pointers are you cannot weak pointers do not exist by
themselves. Weak pointers can be it is a non owning reference, it is an observable vision
reference. So, they can observe objects managed by other shared pointers. So, the weak
pointer directly cannot access the object, you can take a weak pointer, and from that you can
convert to a shared pointer and access the object.

And for that a particular function is given it is called lock(). If you do lock on a weak pointer,
it gives you a shared pointer and you can use that shared pointer. Like in shared pointer, weak
pointer also will give you the count, use_count() which is the number of weak pointers
pointing to this object. If no weak pointer is the, sorry, if the object is no more existing, then
the weak pointer which we can call the expired function and see that if there is the object is

existing or the object has already expired. So, these are the different operations you can do.

(Refer Slide Time: 28:14)

pPRBAEL O U

[ﬁ;} std: :weak ptr: Example

#include <iostream>
#include <memory>

std::weak_ptr<int> gw;
—

void £()_ \)/
if spt = gw.lock()) { Has to be copied into a shared_ptr before usage
STd7:Tout << *spt << "\n";

}

else { std::cout << "guw is expired\n"; }

}

int main() {

weak ptr {

auto 3{= std: :make_shared<int>(42);

gv = sp; T ———
Hr:_hz;z

}

£0; gvw is expired

}

Programming in Modern C++ Partha Pratim Das Ms7.33

Here is a simple example. So, we have a shared, we have a weak pointer and we have done a
lock. So, from that, by that lock, we have got a shared pointer by doing a lock the type is set
by auto and we can make use of that because with the weak pointer, we cannot directly access

object.

Then we have created something from make auto, make shared and then we have assigned
that to a weak pointer. So, weak pointer also observes it and if you print f, it will be able to
print f but once you come out of the scope, naturally, this will get deleted because in an

automatic scope.

So, once this shared pointer gets deleted, obviously the managed object will also get deleted.
So, the weak pointer will find that it has actually expired. So, now when you call f, this lock
will fail and you will print that the weak pointer is expired. So, that is the basic logic.

(Refer Slide Time: 29:36)

rPRBLINL Lt BN

[;ﬂ;j Resource Management: std: :auto_ptr

o

Resource Management: std::auto_ptr

Sources:

® std::autoptr, cppreference

Programming in Moder C++ Partha Pratim Das Ms7.34

E%%‘ std: :auto_ptr

pPRsQEd to

5,

anaging a single Dject 1n t+ . le
template<typename T> class auto_ptr;

template<> class auto_ptr<void>;

o |t retains sole ownership of an object through a pointer and destroys that object when
the auto_ptr goes out of scope
o No two auto_ptr instances can manage the same object
o The raw pointer to the managed object can be obtained by get ()
o The object is destroyed and its memory deallocated when:
o The managing auto_ptr object is destroyed, or
o The managing auto_ptr object is assigned another pointer via operator= or

reset()
o The ownership can also be relinquished by release() which returns the raw pointer of
the managed object —

o Never use auto_ptr in C++11 and beyond

Programming in Mode C++ Partha Pratim Das M57.35

You have an auto pointer, this is historical legacy of C++03 which is somewhat like the
unique pointer but it does not have most of the facilities of the, but it could just be whole
unique objects and the ownership gets transferred by assignment and you could extract the
raw pointer by doing get, do reset, release and so on. And but most of the other operations
like checking for null test and all that are not available. So, it is not something which is

advice to be used at all in C++ onwards.

(Refer Slide Time: 30:26)

PPRBQHl O BN

[ﬁ} Resource Management: Summary of Smart Pointer Ope

Resource Management: Summary of Smart Pointer
Operations

Programming in Modern C++ Partha Pratim Das Ms7.3

PP QEL SO U

W Summary of Smart Pointer Operations
LY

[Member | uniqueptr [sharedptr | weakptr | autoptr | Remarks |

operator= Y Y Y Y assigns the ptr’

release Y N N Y returns a ptr to the managed object and
releases the ownership

reset Y Y Y Y replaces the managed object

swap Y 2 4 Y N swaps the managed objects

get Y ¥ N 4 returns a ptr to the managed obj

operator bool | Y Y N N checks if the stored ptr is not null

owner_before N Y Y N owner-based ordering of smart pointers

operator* ¥ Y N accesses the managed object

operator-> Y ¥ N accesses the managed object

operator(] Y Y()| N W indexed access to the managed array

use_count N Y Y N returns the number of shared_ptr ob-
jects that manage the object

make_unique (1) unique._ptr creates a unique ptr that manages a new object

make_shared shared_ptr creates a shared pointer that manages a new object

static_pointer_cast shared_ptr applies static_cast to the stored ptr

dynamic_pointer.cast shared_ptr applies dynamic_cast to the stored ptr

const_pointer.cast shared_ptr applies const_cast to the stored ptr

reinterpret_pointer_cast shared_ptr applies reinterpret_cast to the stored ptr ()

expired veak ptr checks whether the referenced obj was already deleted

lock weak_ptr creates a shared_ptr that manages the referenced object

Ltransfers ownership from another auto_ptr
Programming in Moder C++ Partha Pratim Das Ms7.37

Now, here as | usually do I have given summary one single slide chart of what are the
different I mean, these are not an exhaustive one, but these are the major member functions
that you have and which member function is available in which kind of smart pointer and
what does it mean. So, you can study this and you should be able to understand why you have
so, for example, you can see that the reason you do not use auto is most of these members are

not available in auto.

(Refer Slide Time: 31:03)

PP QElte . 5 UN

[ééj Summary of Smart Pointer Operations

[Member | uniqueptr [sharedptr | weakptr | autoptr | Remarks |
operator= Y Y Y Y assigns the ptr’
release Y N N Y returns a ptr to the managed object and
releases the ownership

reset Y Y Y Y replaces the managed object

swap Y Y Y. N swaps the managed objects

get Y ¥ N Y returns a ptr to the managed obj

operator bool | Y Y N N checks if the stored ptr is not null

owner_before N Y \ N owner-based ordering of smart pointers

operator* Y Y N ¥ accesses the managed object

operator-> Y ¥ N Y accesses the managed object

operator (] Y Y()| N N indexed access to the managed array

use_count N Y Y N returns the number of shared_ptr ob-
- jects that manage the object

make_unique (1) unique._ptr creates a unique ptr that manages a new object

make_shared shared_ptr creates a shared pointer that manages a new object

static.pointer_cast shared_ptr applies static_cast to the stored ptr

dynamic_pointer_cast shared_ptr applies dynamic_cast to the stored ptr

const_pointer.cast shared_ptr applies const_cast to the stored ptr

reinterpret_pointer_cast shared_ptr applies reinterpret_cast to the stored ptr ()

expired veak ptr checks whether the referenced obj was already deleted

lock weak_ptr creates a shared_ptr that manages the referenced object

Ltransfers ownership from another auto_ptr
Programming in Modern C++ Partha Pratim Das Ms7.37

Whereas, some are available in some, for example, use_count() is not available in unique_ptr
because in unique_ptr use count is always one, that is not it is an exclusive ownership, so it is

not much meaning. So, this is a quick reference that you can have.

(Refer Slide Time: 31:20)

[BN AR A B R

Resource Management: Binary Tree

Resource Management: Binary Tree
Sources:
® std::shared.ptr, cppreference

® std::weak ptr, cppreference

Programming in Modem C4- Partha Pratim Das Ms7.38

PPRLAHL PO T

[ﬁ%} Binary Tree

o We show an example of a binary tree where every node keep a back pointer to its parent
o This leads to circularity and using std: :shared_ptr we cannot clean up the tree

o So we use std: :shared_ptr for the two children and std: :weak ptr

o Similar strategy may be employed in every case of circular data structure design

o Note that using std: :shared_ptr for a binary tree may be an overkill as every node is
held by its unique parent. So using std: :unique_ptr for child and raw pointer for
parent may be more optimal

Programming in Moder C++ Partha Pratim Das Ms7.39

So, finally, we end with an example to see we had talked about having shared pointer and

weak pointer to break the circularity. So, let us see did we have we been able to do that.

(Refer Slide Time: 31:35)

pPRsQElte L UN

[ﬁé} Binary Tree using std: :shared ptr and std: :weak pt

#include <iostream> int main() {

#include <memory> ared_ptr<Node> root = // root:

using namespace std; make, shared<Node>(2) ;

[‘struct Node { J root-x}é— left child: 1
wns left child make, shared<Node>(1) ;

shared_ptr<Node> lc,/
shared_ptr<Node> rc;

weak_ptr<Node> parent;

root-yc =
make_shared<Node>(3);

int v; Node value root->lc->parent = rootf} back link
Node(int i = 0): v(i) root->rc->parent = root;
{ cout << "Node = " << v << endl; }
“Node () shared_ptr<lode> p = root;
{ cout << ""Node = " << v << endl; }]\ ~ ¥eak_ptr<liode> g;

L); N cout << p-d>v <<’ 7

} ’ IT = p->1§;

ode = 2 ' cout << p->v <<

Node = 1 \ q = p->parent;

Node = 3 O p = q.lock();

g P = poorC;

“Noda = 2 cout << p->v <<’ 75

“Node = 3 cout << endl;

“Node = 1

Programming in Moder C+-+ Partha Pratim Das MST.40

So, | have given here a very simple node design for a binary tree. So, you have a node, you
have two child pointers to others, and each child pointer has a parent pointer, the child
pointers are smart pointers, left child and right child whereas the parent pointer is a weak

pointer. So, that is how you break that cycle.

And then you can make a root, set the child node of the left child of the root, right child of the
root, set the parents of both the children and you can just create another shared pointer to the

root and using that shared pointer, you can check the values this is all that gets displayed.

And finally, you are not doing any delete or anything, but as the program ends at this point,
naturally, these shared pointers that have been created goes out of scope. And therefore they
are automatically deleted and the corresponding nodes are deleted and therefore, the
destructor prints this messages.

(Refer Slide Time: 33:02)

PP QElto . UN

Binary Tree using std: :shared ptr and std: :weak pt

#include <iostream> int main() {

#include <memory> shared_ptr<Node> root =

using namespace std; make_shared<Node>(2) ;
struct Node { root->lc =

shared_ptr<Node> 1c; wvns left child make_shared<Node>(1) ;
shared_ptr<Node> rc; root->rc =
sseak-ptr<Node> parent; make_shared<Node>(3);

int v; Node value root->lc->parent = root;
Node(int i = 0): v(i) root->rc->parent = root;

{ cout << "Node = " << v << endl; }
“Node() shared_ptr<lode> p = root;
{ cout << ""Node = " << v << endl; } weak_ptr<liode> q;
}i cout << p-dv <<’ 75
P = plc;
Node = 2 cout << p->v << ?
sl q = p->parent;
Node = 3 P = q.1lock(); weak to shared
£ R _ p = porC;
“Node #£ 2 // Nodes will not be cleaned cout << p->v << ? 7;
“Nogé = 3 if s a sh tr cout << endl;
“Hode = 1 This is due to circularity 14

Programming in Moder C++ Partha Pratim Das MS7.40

Just as a final check, just as a final check that this indeed is a solution you need it change this
week pointer to shared_ptr. If you do that, the circularity will come back, try that and we will
see that these messages will not come because now at this point, even though these three
objects are going out of scope each one of them has a reference count, which is not 0. So, it

cannot be destroyed. So, that is the that is the basic story.

(Refer Slide Time: 33:43)

pPRB ATl Lt

Eﬁ;} Recommendations for Smart Pointers

Recommendations for Smart Pointers

Programming in Modern C++ Partha Pratim Das M57.41

PR LAl LO T

@ Recommendations for Smart Pointers
i

Fa
L

o Scott Meyers in the his book Effective Modern C++ (Chapter 4. Smart Pointers) has
made the following recommendations for the use of smart pointers for resource
management:

o Item 18: Use std: :unique_ptr for exclusive-ownership resource management

o Item 19: Use std: :shared_ptr for shared-ownership resource management

o Item 20: Use std: :weak ptr for std: : shared_ptr-like pointers that can dangle
o Item 21: Prefer std: :make_unique and std: :make_shared to direct use of new

o We strongly recommend the use of these for modern designs

Programming in Moder C++ Partha Pratim Das Ms7.42

Finally, 1 would recommend that you study the chapter 4 of effective modern C++ the book
by Scott Meyers, which is an excellent discussion on smart pointers particularly in modern
C++ and there are four items which make four recommendations and that you must always
follow. Use unique pointer for exclusive ownership use shared pointer for sharedly own
resource management use weak pointer when shared pointers can dangle and make use of

make_unique and make_shared do not use new along with these pointers.

(Refer Slide Time: 34:23)

pPRLAHL O T

[ﬁ} Module Summary

o Discussed various policies of smart pointer
o Ownership Policies
o Implicit Conversion policy
o Null test policy
o Familiarized with Resource Management using Smart Pointers from Standard Library
o unique_ptr
o shared_ptr
o weak_ptr
o auto_ptr

Programming in Modern C+-+ Partha Pratim Das MS7.43

Thank you very much. We have discussed about the different policies and introduced the
smart pointers in C++ Standard Library. Thank you very much for your attention and we will

meet in the next module.

