Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 56
C++11 and beyond: Resource
Management by Smart pointers: Part 1

Welcome to Programming in Modern C++. We are in week 12. And | am going to discuss
module 56.

(Refer Slide Time: 0:35)

4411 and beyond: Resource Masagement by Sma

Partha Pratim Das
Dagartment of Comguter Scheece and Ergonwng
ndian Instiate of Tochachiyy Kharagpwr

poaPose kgp ac

AN arl’s b thes reoddide fove Deen accessed i Septoveber, X127 aodf doand o e fincmizosd

¢ Learnt how Rvalue Reference works as a Universal Reference under template type deduction

¢ Understood the problem of foewarding of parameters aad its solution using Universal Reference
and atd: :forvard
o Understood how Move works as an optimization of Copy
o Understood) expressions {umnamed function objects) in C++ with
o Clomere Objects
o Paramaters
o Capture
o Leant different technigues without or with std: : function to write and use non-recursive and
recursive A expressions in C++11 / L4+ 14
o Introducing several dass features o C++11 with examples
o Explained how these features enhance COP. generic programening. readabilty, type-safety, and
perfarmance in C4-4-11
o Introduced several features in C++11 for non-class types and templates with examples
o Familiarizes with important non-class types like enum class and foed width integer
o Familiarized with important templates fike vanadic tempfates

Earlier in the previous week, we have learned about various important C++ features.
Continuing on Rvalue reference, we have seen how it works as a universal reference and

template type deduction, we have learned more about how move work as an optimization of

copy, we have learned about Lambda expressions, that is undimmed functions, recursive
lambda and so on. And various features of C++11 and some of C++14 which are around
classes or non class types, variadic templates and so on, kind of you are Now, rich in C++11

familiarity.

(Refer Slide Time: 1:30)

el
tBd¥: Module Objectives
i

o Revisit Raw Pointers for resource management

o |ntroduce Smart pomters with typical interface and use

o Introdoce the polices for smart pomter

In this context, in this module, we are trying to discuss about resource management using
what is known as smart pointers. We will revisit raw pointers for resource management and
introduce smart pointers interface and so on. This is not a language extension resource smart
pointers existed in C++03 also, it is more like a style of doing things and it is a standard

library support that we are going to discuss.

(Refer Slide Time: 2:05)

Fa
'B¥: Raw Pointers
il

Raw Pointers

Sewrcn
L 1 thy! Sorash Khojesor, 2000

Prgrammng @ Moders

>

P , Sl
iﬁi Motivation: Resource Management

o Imbide 2 cuiture to write good

o Correct: Achieves the functionality
o Bug free: Free of programming errors
o Maintainable: Easy to develop and support
o High performance Fast, Low on memory
¢ Dynamic creation & destruction of objects is a strength and a bugbear of C [/ C4++
o It needs manual resowrce management by the programmer, She [he has to control
o the aflocation of memory for the objgct,
o handle the object’s initialisation and,
o ensure that chject was safely cleaned-up after use and its memory retumed to heap
o This leads to C | C++ being an unsafe, memary-feaking language
¢ Resource Management frees the clisnt from having to worry about the lifetime of the

managed object, eiminating memory leaks and other problems in C4+—+ code
o A rescurce could be any object that required dynamic creation/deletion = memavry, files
sockels, mulexes, etc

o Effective Resource Managemant is needed so that dynamicaly managed objects can be

managed a5 automatic abject
oanaged 95 uf ject

So, this is a outline. So, first, quickly about the raw pointers, now, the question is what is our
motivation for doing this discussion. Now, naturally, we always want to get a get into the
culture of writing good C++ code, which has to be correct, bug free, maintainable, high
performance and so on. And that is the basic object. Now, what creates a major problem in
this whole endeavor, one of the factors is dynamic creation and destruction of objects. On one
side, we know, that this is a major strength of C++, but it is also a bugbear of these

languages.

Because it needs that this resource management the dynamic other than the dynamic resource
management, everything is automatic, the compiler does it either it is explicitly automatic or
it is in the static area. So, when which has an automatic like behavior, like you do not need to

make a decision about when to allocate memory, create an object and initialize and when it is

safe to clean up that object and return that memory to the free store. So, because of this
requirement, which comes from the enormous power of the dynamic object management,
often we the programmers failed to do things correctly properly and that leads to the tag that

C++ is unsafe, it is a memory leaking language and so on.

So, resource management talks about freeing the client from this lifetime management of the
objects, it can eliminate memory leaks and other problems. And when we talk about resource
it does not necessarily have to be only address locations. It may be memory, it may be file, it
may be socket, it may be mutex, it may be a database connection and so on, so forth. The
basic idea is put an effective resource management in place so that the dynamically managed
objects can be managed as automatic objects. That is on one side we want the advantages of

dynamic object creation destruction.

On the other side, we want to avoid the problems by giving them a lifetime management

which is like the automatic objects. So, this is the basic idea of the resource management.

(Refer Slide Time: 4:57)

r‘"‘ L O
kﬁi Raw Pointers: Operations

Raw Pointers: Operations

e

tld¥: Raw Pointer Operations
=X

o Dynamic Allocation (result of) or operatord
¢ Deallocation {calied on)
o Dereferencing operators

o |ndirection o or-3

o Assignment operator=

o Null Test operator’ (operator== Q)

o Comparison opera
(st

o Cast operator(int), oper

o Address OF operatord

o Address ArithmeTic 0peTators, OPArator=, 0POTATOrs+, OPOrATOY==, OPAratorss

operator-= eim ap S -

¢ Indexing (array) operator (]

Now, the resources as we know, are held by pointers. And in this discussion, we will call the
pointers as raw pointers to distinguish from the version of pointer that we are going to
introduce, which is smart pointer. So, just to I mean you know, all this, but just to remind you
that what are the operations that a pointer can do? It is a dynamic allocation results in a

pointer or the address ampersand operator will give you a pointer.

Deallocation is called on a pointer, de-referencing is done by this pointer star indirection by
pointer arrow, | can assign pointers, | can do null check on pointers, | can compare pointers. |
can cast pointers whether or not it is a good idea, that is a different thing, but I can address of
operator, | can do arithmetic, the meaning of that arithmetic is little different, as you know,

but I can add an integer or subtract an integer from a pointer, | can indexes and an array.

So, there are so many things that | can do with pointers, of course, the code being these two.
Now, some of these are really useful, whereas some of these are really a pain. For example,
the address arithmetic that we are allowed to do often is a pain in terms of correctness, unless
we are working with a really really low level code, where we have to keep track of addresses.

(Refer Slide Time: 6:31)

L R R

Fal »
kﬁi What is a Raw Pointer?

o Typical use of Painters

o Essential ~ Link (‘next') in 2 data structure
o Inessential - Apparent programming ease
Passing Objects in functions: void MyFunc(NyClase ¢);
Smart expressions: while (p) cout << sps+;
o Itis not a First Class Object (FCO) : An integer value is a FCO
¢ It Doss not have a Value Semantics : Cannot COPY or ASSIGN at will

o It is a Weak Semantics for Ownership of pointee

Prgrommg » Medors

So, the typical use is in creating links or passing parameters to functions and so on. Now, the
main problem is that | mentioned this earlier also that a pointer a raw pointer is not a first
class object, like an integer, that is it does not have a value semantics, | cannot freely copy
and assign it. If I copy the pointer, the pointee does not necessarily get copied. If I assign
something it does not happen in that way. So, there is a very weak semantics for the

ownership of the pointee who owns that the pointed object, that's a very ill defined area.

(Refer Slide Time: 7:16)

B B O B A A RS °

P v _
iﬁi Raw Pointers: Ownership Issue of Pointers

Raw Pointers: Ownership Issue of Pointers

Pband e .. L0

>
« Ownership lssue of Pointers

ed code in presentation

& Owsershlp lsee ~ COPY problen
WCLans 5 = sav Myllase
MyClase 4q * ¢
Salets ¢

® Schion Of thase: Exception Handling through try-catch

raid Myhctical) {

Psand te .

P 4 i
iﬁ‘i Ownership Issue of Pointers

»
& Dwnerstip loven - vaw/ VSN
¥Clam v 'll':-; MpctaseY) | — T ‘ll\.. |
e R (3L
& Owsershp lsve -~ COPY problen My ¢
WCLats o5 = 3w !r::.n,'/ ((TfJ
Wolass 07 {" 1)
WyClase 3T« ¢ f

(Galatg p7
Y

® Schvtion OF these: Exception Handling through tey-catch

reid Mphcticnl) |

So, these are the typical ownership issues that we know, for example, this is where the
pointer to MyClass is assigned a new MyClass object is created and the ownership is given to
p. So, p now, also you need to know, p to get to this new object. But if | assign p to 0 or null,
then simply information is ownership information is lost. And we say that memory has
leaked, because there is no way to get to this object anymore, that dynamically created object
it will still know, will be held in the memory, but I will not know. So, that is a basic

ownership assignment problem.

Then | have a copy problem, | similarly create one put it to p, | take another pointer. So, |
have this p, | have created one object MyClass object. And | have made another pointer q
copying p. So, p also q also points here. Now, | delete q, if | delete g, then | also delete, it

means that | actually delete that allocated object. So, unknowingly when | do delete p at a

later point of time, the object is already not there. So, | get into a double deletion mean error.

And it gets more complicated when | have them in the try catch kind of environment.

(Refer Slide Time: 8:53)

PPl te . L0

Fa , :
iﬁi‘ Pitfall: Handling Ownership Issue of Pointers using try-

o Exceptional path deeinates regular path

veid MyDoubledctical) |
MyClags op « 0, oq = 0;

Let me show you a fuller example. I have two pointers p and g. A MyClass object with that
pointer, | am calling the function, a function of the MyClass and other MyClass object, | am
calling the function of the MyClass. Now, if this function of MyClass can throw, then it can
throw here, throw an exception here, it can throw an exception here, in either of that, the try
has to break and get me to the catch clouse. Now, at this point, | have to release the resources
that have been allocated within the try block. Otherwise, as | go out, these resources cannot

be released further.

So, | have to do the, | have to delete them. But if they do not throw then these do not happen.
So, | have to delete them anyway. So, the code the same code gets repeated in multiple
contexts. So, that is the basic problem that is going to happen in case of using the raw
pointers. It does not happen with the automatic variables, because if you have defined
anything within the tribe as a as an automatic variable as you go out of that it will

automatically get released.

(Refer Slide Time: 10:36)

fo .9

r"" pP e any
k@i How to deal with an Object?

So how do we deal with the objects to alleviate such problems?
o The object itself - by vafue
o Perdormance lssue
o Redundancy lssue
o As the memory address of the object — by pointer
o Lifetime Management Issue
v Code Prone to Memary Errars
o With an alias 1o the object — by raference
o Good when null-ness is not needed

o const-ness is often usety

[T ——T e

So, as we know, that there are three ways to deal with an object one is by value, one is by
pointer and one is by reference, if you do it by value, you have performance issue,
redundancy issue, if you do it by pointer, you are getting these kinds of lifetime management
issues, memory issues, if you try to do it by reference, then you can do it in only some limited

context when null-ness is not needed or const-ness is very useful.

(Refer Slide Time: 11:08)

: + Pointers Vs. Reference
2|

o Use Reference to Objects when
o Null reference is not needed
o Reference once created does not need 1o change
o Avaids
¢ The security problems implicit with pointers
o The (pain of) low level memory management (that is. defeta)

o Without Pointer = Use Garbage Collection

gy @ bhdbre Fahis Pyt B

So, if we compare reference and pointer from that perspective, then we can use reference
when null reference is not really required, but in many places someone you cannot use
reference to build a link. And once created, it does not need to change that is the reason you

cannot build a linked data structure with reference it has to be a pointer.

(Refer Slide Time: 11:32)

Fal
¥ Smart Pointers
il

Smart Pointers

Seurci
The | | The Big v ' s Maragermet 2004
1t |, Sonnh Khajepor, 421
Sorush Khajeper
11 Sarssh Khojegor, 2021

[——T e

potsand te .

What is a Smart Pointer?

o A Smart pointer is a C++ object
o Stores pointers to dynamecally allocated (heap | free store) objects
o Improves raw pointers by implementing
o Construction & Destruction |
o Copying & Assignment
o Dereferencing

) 4
f
|
b Operat or-> |
unary operatore f

. G'-’Jsslv MEMICS raw Pointer syntax and semantics

So, these are some of the problems with the pointers that we have. So, smart pointers are
conceptualized to solve this kind of problems, alleviate this kind of problem. So, what is it a
smart pointer, is a C++ object. Smart pointers stores pointers to dynamically allocated
objects, so, smart pointer has a raw pointer inside which holds that object but it improves the
raw pointer by implementing proper strategies in its construction, destruction, copy and

assignment, dereferencing and so on, if it does move, then in the move operators and so on.

But grossly it must mimic the raw pointer syntax and semantics. That is the basic idea. We
will see that earlier existing code also has to work if | change the raw pointer to smart

pointer, but these will have to happen.

(Refer Slide Time: 12:36)

Qs te .

ré" T T f’ E z P
el Typical Tasks of a Smart Pointer
==

o Automatically deletes dynamically created objects at appropriate time
o On face of exceptions ~ ensures proper destruction of dynamically created objects
o Keeps track of dynamically allocated objects shared by multiple owners
o Concurrency Control v/
o Supports kdioms: RAII; Resource Acquistion is Initialization |diom and RRID
Resource Release [5 D&Enuction
o The iclom makes use of the fact that every time an object is crested a constructor
5 ca¥ed; and when that object goes out of scope a destructor is called
o The canstructor/destructor pair can be used to create an object that automatically
allocates and initialises ancther object (known as the managed object) and cleans
up the managed object when it (the manager) goes out of scope
o This mechansm is generically referred 1o as resource management

Prgpamng Medies Pt Pptn B

So, what are the common tasks? The first thing the smart pointers do, they disallow what is
called the unwanted operations that is address arithmetic. I mean, unless you are a real, you
are doing a real system level programming, you do not need address arithmetic. It is a very

bad idea to use. So, smart pointers do not have address arithmetic operators.

But it helps him lifetime management, it automatically deletes the dynamically created object
at an appropriate time on the face of exception it can create the actual destruction. It is useful
in concurrency control and it supports what is called the basic resource management idioms
RAII Resource Acquisition is Initialization Idiom, and RRID that is Resource Release Is

Destruction idiom.

So, what is RAIl mean? RAII means that as soon as you acquire a resource, you initialize you
do not let it move around. And you do that. So, in the smart pointer, | said there is a raw
pointer pointing. So, as soon as you create the smart pointer at that point itself, you must
acquire the raw pointer that is pointing to something and that object which it is pointing to is

called the managed objects.

It does RRID in the sense that if you now, release the smart pointers, it must release the
managed object as well. So, the smart pointer is the manager and the object that is
dynamically actually allocated is a managed object. They must work in complete sync with
RAII and RRID. And this is referred to as Resource Management.

(Refer Slide Time: 15:00)

Pt and te .

P . :
iﬁi Typical Smart Pointer Interface

tezplate <class D
clams SgartPir |
1

potsand te .

P i :
iﬁi Typical Smart Painter Interface

tegplate <class D
clams SgartPir
sob]

=4
0 A lI ;
\
P
v A
o
SaartPor{const SsartPtrk other)
SsartPurk operator=(ccast SmartPerk otder)
“SmartPtrl);
Tk opavatore() ccost TetEIn *poistes |

Now, this is a typical interface of a smart pointer. So, what do you what all things you need a
constructor and we are saying we will do RAII. So, the smart the constructor must not be
implicitly invoke able it must be explicit, I must know, that | am creating a smart pointer and
it does not have a default it needs a pointee. So, resource allocation is initialization the
moment this construction is happening, it is initialized the pointee that it contains is

initialized with a given pointer to a allocated managed object.

Similarly, for it can be it should be possible to copy it by construction and constructed by
copying it should be possible to copy it by assignment. And when we do these kinds of copy
operations, we have to consider whether that copy is a smart copy, | am sorry, whether that

copy is a deep copy or that is a shallow copy also.

(Refer Slide Time: 16:30)

Polsanste . Wy

P e :
iﬂi Typical Smart Pointer Interface

tesplate <class
class SgarsPir |
public

¥ ~
N \
axpl
f P ‘
/ N /
FaArtPLr [v
. Qw -
sartPurk opera ast 3m] ar | |} [, %15
N AN i
SmartPtrl); v/ b o
i e
Tk oparatore 0 TEIn *poiste
Te opw r { retura poi
priva

So, this is the basic thing then we need the destructor and what the destructor has to do,
destructor will necessarily call delete pointee by calling the delete pointee, it ensures that
RRIDs and for that if the manager is managed at this smart pointer object is getting out of
scope. So, therefore, it is getting deleted, which is getting destructed then the managed object
will also be also vanish. So, Now, we can see that this pointee is basically a dynamically
created object and is to be dynamically constructed and destructed, but its semantics of
lifetime is dependent on the constructor and the destructor which we know, pretty much can

be used in the as an automatic object.

(Refer Slide Time: 17:36

Pty

P . _
iﬁi‘ Typical Smart Pointer Interface

tesplate <clama D
clams SsartPir
sob]

/
_ [/ No isplicis ccoverzion froa Raw pir - /-_‘ |
| explicit SzarsPir(Te pointes) /:‘///'I/JL—'&‘/
poistes_(pointes) | | "rjl

| YJ‘,
f 3 l,./"‘

SaartPrr(const SsartPrrk other) v

SsartPurk operator=(ccast SmartPork otder) o

“SmartPtri);

So, this is about the basic lifetime management issues. Now, we need it to be a pointer. So,
we need to overload. So, this is basically solved by overloading that they can dereference the
smart pointer to get the value that you are referring to. So, whatever the pointee is referring
to, so, that is why this is T&, this a. So, if | draw it out, then this is the smart pointer, this as
the pointee, the object is object. So, if | dereference this, | should get this and that is what is
being done by overloading this dereferencing operator. Similar thing happens with the

indirection operator, it basically returns me the raw pointer and this is the pointee member.

(Refer Slide Time: 18:48)

PP and e L1

Pt i . . _
iﬁd‘ Typical Smart Pointer Use: Mimic a Raw Pointer

Now, how do you use it, exactly as you use the raw pointer. So, | have a | have MyClass with
function, | create a managed MyClass instance | do a new MyClass and pass it immediately
to the constructor of smart pointer, templatized with MyClass. So, it is immediately sent here.
So, as soon as the resource is allocated it is captured by this sp and then I cando as 1 do in a
pointer similar way | can do sp pointer function because sp pointer function is sp dot operator
in direction and what will that give me? That will give me the pointer, the internal pointee
pointer and on that the function will be called which is a normal code or it can work as

dereferencing exactly in the same way.

So, with this two operator overloading and these basic construction, destruction, copy move

kind of operations, | can have a smart pointer, which behaves exactly like the raw pointer.

(Refer Slide Time: 20:14)

LB B

Smart Pointers: Palicies

Smart Pointers: Policies

Prgrammng @ Moder Fa®i Mg L

PPt and te .

Ownership Management Policy

o Smart pointers are about cwnership of pointees
ettty il ot s
¢ Exclusive Ownership
o Every smart pointer has an exclusve ownership of the pointee
o 8td: unlque.ptr
o Use Destructive Copy
o’Shared Qwnership
/" o Ownership of the pointes is shared between Smart pointars = more than cee smart
/
/ pointer holds the same pointee
¢ std: :shared.ptr
o sud; :veak ptr
o Track the Smart pointer refarences for lifetime
Reference Counting

".‘» e n I
v Heferance | KINK

In terms of the, | mean, which mimics the raw pointer, but can Now, behave in a multiple of
different ways. So, there is a basic charter expectation of how a smart pointer will be. It must
always point either to a valid allocated object or is null. It cannot ever point to something
which is an invalid object. It deletes the object once there is no more reference to it. If that
object is not being referred, it will have to be deleted, it must be fast that is with minimal
overhead. Raw pointers only will be converted to smart pointers explicitly. It can be used

with the existing code where 1 am not going to rewrite the earlier code.

Programs that do not use low level stuff will be written exclusively using this pointer, no raw
pointer is needed only if you do low level stuff that is where you need the address arithmetic

kind of operators and therefore, you will need to have the raw pointers. It must be thread safe,

it must be exception safe and it should not have problems with circular references, we will
see what does that mean and programmers vouch that they will not keep raw pointers and

smart pointers to the same object.

(Refer Slide Time: 22:01)

o The charter is managed through 3 set of policies that being in flexibility and leads to
different flavoes of smart pointers

o Major policies include
e Storage Policy
o Ownership Policy
o Conversion Policy
> Null-test Policy

Now, to achieve the charter, certain policies have been identified for smart pointers that bring
in flexibility and also lead to different flavors of smart pointers according to requirement. The
policies include storage policy, ownership policy, conversion policy, null test policy, et

cetera. We will use we will discuss some of them in this module and the rest in the next.

(Refer Slide Time: 22:32)

N

X A B

r"" L *
iﬂi Smart Pointers: Policies: Storage Policy

Smart Pointers: Policies: Storage Policy

vqre— @ Wdere

o The Sterage Type (T+)

o The type of pantee: Specialized pointer types possible: FAR, NEAR
o By defaut, itis a raw pointer
o Other Smart Pointers possible: When layered
o The Pointer Type [T#)
o The type returned by operator>
» Can be different from the storage type if praxy objects are used
o The Reference Type (Tk)

¢ The type returned by operators
—

So, first the storage policy it is very simple that you have to define for a smart pointer there
are three storage policy requirements, one is what is a storage type? What is the type of
pointer that you are actually storing? It could be a far pointer and near pointer, layered
pointer, layered pointer means a smart pointer which is pointing to another smart pointer, it
could be layered. What is the type of the pointee, the object that you are dealing with that is a
T* and what is the point, what is the type of the reference, the type that is returned by
operator star.

So, what is the actual storage type and what returns by indirection operator and what returns
by dereferencing operator, these are, often times these all will be same based on the same T

but it they can be different as well.

(Refer Slide Time: 23:37)

‘EYEEEE

r"" pe s °
iﬁ‘l Smart Pointers: Policies: Ownership Policy

Smart Pointers: Policies: Ownership Policy

PR and te .

I
kﬁi Ownership Management Policy

o Smart pointers are about ownership of pointees
¢ Exclusive Ownership e
o Every smart pointer has an exclusve ownership of the pointee
std: sunique prrv’
o Use Destructive Copy \/
¢ Shared Ownership
,,/’ o Ownership of the pointes is shared between Smart pointers = more than cee smart
/ pointer holds the same pointee
¢ std: :shared.ptr
std; iveak ptr
o Track the Smart pointer references for lifetime
Reference Counting

";‘u e nh |
» Heference Linking

What really makes a difference and that is the smartness typically most focused on is the
ownership policy that we identified at the very beginning discussing raw pointers and the
main problem of raw pointers is they may not own the object that they are pointing to, their
ownership is broken. So, the smart pointers are about ownership of pointers and two types of

ownerships are identified, one is exclusive ownership.

That is in an exclusive ownership, every smart pointer has an exclusive ownership of the
pointee. This is only this the object being pointed to is pointed to by only this smart pointer
none else can point to it. The library provides a smart pointer called unique ptr for this

purpose, and exclusive ownership means destructive copy.

I will explain what destructive copies. Shared point is, on the other hand, deals with the fact
that the point is shared between multiple shared pointers that is more than one smart pointer
is pointing to it. Library provides two types of shared ownership, shared_ptr and weak_ptr.
We will explain later. And the since multiple pointers are pointing to the same object, | need
to keep a count of how many pointers are pointing to me for the lifetime management, that is

called reference counting.

(Refer Slide Time: 25:32)

PP QAnl e

P 4 v
iﬁi Ownership Policy: Destructive Copy

o Exclusive Ownership Polcy
o Transfer ownership on copy
o Source Smart Pomter in 2 copy is set to NULL / mullper
o Avadsble m C++ Standard Library
© 3td; Junlque.ptr
o |mplemented in
o Copy Constructor
C llp-(i‘_'.",'_l,r‘

Now, first the exclusive ownership, since the ownership is exclusive, what will happen if |
copy, the ownership has to just get transferred that is a source will no longer continue to own
the pointed object, the source says one pointer will become null on nullptr. And the
destination will own this, this is what the unique_ptr shared pointer smart pointers do this is

implemented in copy operations.

(Refer Slide Time: 26:08)

potsand te .

P . . '
iﬁ‘i Ownership Policy: Destructive Copy

template <class T>
class Sgarchy |
pudlic
Fn!”',x&nr'?'.ri ared | cannt
poiztes_ ® arc.pointee.;
Frc.polntes_ = &;

coant

delwte polntes |
pointes_ = 3rc.poiztes ;

2y 7
¢.pob . 0./
src.gointes. = Oy

return vthis;

So, you can easily see that | have the pointee, so, if | have copy constructing, I am simply
copying that that means is a shallow copy to our referencing here, but the important part is |
set source dot pointee to null. So, | removed the ownership of the source that is the reason.

The signature of this particular copy constructor is different, it does not have a const. You can

also provide necessary move construction here. Similarly, for the copy assignment operator,
you do not have the const because you are going to take away for assignment you are going

to take away the ownership again.

So, you check for the self copy, which is the same you delete whatever you have been
pointing to because you are taking ownership of a new object. So, the earlier object that you
are pointing to, you are the only person who is pointing to it because you are unique
exclusive. So, that object that pointer will get lost. So, that object has to lifetime has to also
end, so, you delete that copy from the source and set the source to null, so, that you have

taken pointer.

So, this is basically so this is what is known as destructive copy, which is the core idea of

exclusive ownership.

(Refer Slide Time: 27:37)

potbandte . L0

P . .
iﬁ‘l Ownership Policy: Destructive Copy: The Maelstrom Effect

o Consider a call-by-value

void Digplay(SagseitrConethizg> sp);
e e ————
tr<Sopething> spinev Sceething);
p

o Display acts like a maelstrom of smart ponters:

o It sinks any smart pointer passad 1o i1

o After Display(sp) = called, sp hokds the null pomter
o Lesson: Pass Smart Pointers by Reference

o Smart pointers with destructive copy cannot usually be stored in containers and in
general must be handled with care

o STL Containers need FCO

Now, that creates some effects if you use the destructive copy smart pointer as a parameter as
a call by value parameter. So, suppose | have done this call by value parameter to a function
and | have a smart pointer exclusive ownership smart pointer created and a call display. Now,
what will happen as a call display, this sp will get copied to the formal parameter of the
function display. And as you do the copy the ownership will get transferred to the smart
pointer that exists in the display as a formal parameter and the actual parameter sp will lose
the ownership.

So, after display returns the display will point to nothing, it will have a null pointer, it holds a
null pointer. So, it is whenever you do not want this to happen, you must pass the smart

pointers by reference. And that is that is precisely what the STL containers need.

(Refer Slide Time: 28:56)

pPtsand te . L

P 4 v
iﬁi Ownership Policy: Destructive Copy: Advantages

o Incurs almast no overhead
o Good at enforcing ownership transfer semantics
o Use the maefstrom effect to ensure that the function takes aver the passed-in
pointer
o Good a5 return values from functions
o The pointee object gets destroped if the cafler does not use the return value
o Excellent as stack variables in functions that have multiple return paths
o Avadable in Standard Library
o std::auto.ptr | depracated m removed in

st el ————

o gtd! umqua.;l’.!: |

So, the advantage is it has almost no overhead and it is good for enforcing transfer of
ownership semantics. You can use the Maelstrom effect, Maelstrom is like a whirlpool,
which pulls something down, to ensure that the function take over the past in pointer if you

want. It is particularly good as return value from functions.

And in terms of the standard library support C++03 had only one type of smart pointer and
that was this destructive copy it is known by auto_ptr but subsequently it has been deprecated
in C++11 And it has been removed from C++17 that from C++17, if you have auto_ptr in
your code, the code will simply not compile. And Now, what you have in place is a

unique_ptr. We will talk more about that later.

(Refer Slide Time: 29:52)

PPt and te . L0

Fal ‘ _
kﬁi Ownership Policy: Reference Counting / Linking

o Shared Ownership Policy

o Allow multiple Seart peinters to point o the same pointee

o Reference Counting A count of the number of Smart panters [references) to 3 pointes
o Non-Intresive Counter: Muitiple / Single Raw Pointers per paintee with count in free store
o Intrusive Counter: Count 5 3 member of the object
o Destroy the pointee Object when the count equals 0

o Reference Linking: Al Smart pointers to 5 pointes are Inked on 2 chain

o The exact count & nat maintamed = only check if the chamn is '».»;"—7\\
4 \

o Destroy the pointee Object when the chain gets empty / ¥\
: |
o Avaidable in C++ Standard Library f \ |
” 1)
o $t4d: isBared pty bd| /’\‘ \)}
£7 1) / :
o §td: veakpts ol e o) S
Implemented [\ K8 X /N
o Implemented in \ \ AN \
|I i \ }/\4 / _/ | /
> Constructor \ | N T Y |
o Cogy Constructor l". Q ’7‘.|
O operator= N\ \ TN
2\
o Destructor h 0. ¥ /7/1

Prgrammeg = Midvs Pe®s Myam 2ot

Now, the other side if you have a shared ownership then the basic idea is multiple points are
there is one object and multiple smart pointers are pointing to it. Now, therefore, how do you
decide when to release this object? You cannot release this object as long as some smart
pointer is holding it, because that pointer must be using that is a shared logic. So, what you
do this very simple idea, you have a reference count that reference count says how many
smart pointers are pointing to it. So, often the shared ownership smart pointers are called

reference count smart pointers.

Now, how do you keep the reference count there could be several strategies it could be you
could keep it as a part of the object, you could keep it separately and so on, so forth. Another
way could be that you could just link those references in a chain instead of you can have this
as a chain and both ways chain, you can change the references instead of keeping account.
So, that if you destroy a smart pointer, it checks if it is the last one in the chain, which is easy
to see. And if it is the last one, it will destruct the pointed object otherwise, it will simply

disappear itself from the from there.

And there are two variants of this shared_ptr and weak_ptr we will see why we need this.

And it's implemented in these different copy move those kinds of operations.

(Refer Slide Time: 31:41)

L I O

TEE B

N

IR
Lﬁi Ownership Policy: Exclusive and Shared

Exclusive Ownership

¢ Exchinive Ownarship Policy

o Transfer ownership en copy

o On Copy: Scurce is st 1o NULL

¢ On Delete: Destroy the poiotee Object

o std:satoptr (
l /
o Coded in: C-Cror, oparators

). std: cunique.ptr

Prgramg » Medwrs

@ Shared Ownership Pelicy

o Mukigle Smart pointers to same pointes

¢ On Copy: Referance Count (RC) incremented

® On Delete: BC decremented, # RS > 0
Pontee object destroyed for 3C = |

& and: iahared prr, end: iveak ptr | |

® Coded in: Ctor, C-Coor, oparator=. Dtor

- B

So, you have two kinds, exclusive ownership and

ownership, the source is set to null, in shared ownership, the reference count is increased. On
delete, in exclusive ownership, the pointee object is deleted in shared ownership, the

reference count is decremented and if by that it becomes 0, then the object is deleted. So, this

is the basic idea.

(Refer Slide Time: 32:14)

L I

Fa ‘) '
iﬁi Ownership Policy: Exclusive and Shared

shared ownership, so on copy in exclusive

PP E

V) Extra iedirection & sen-aminmive counter -t |
ot T | ‘./\.
/ / \
/ A \
L/ 3)
— ¢ H) — 7
\ /
L | \ &
< e e
Eatrs ponier & | Jp-
000 istrasive coumier s DAY Reference lbing
e

® Koo Irtresive Cosrter

0 Add couet pir per
st ptr

O Count it Free Stom

S Mocaticn ol Coent
reay be sow as it b too
sl [may b vproed
by pebal pedd)

Prgrommng @ Medves

Mirudee commner
® Nen-datrishes Coomter

O Addl caure ptr meroed

O Dut 008 aciess vl mears sower spied
8 Ietrunive Counter

© Mot cptinized RC smart ptr

O Connct work for an abeady eainting desige

© Used bn Component Object Model (COM

® Relerrce Linkig
Dwrtwad of tvo 204l sty
0 Deebbpliaked list Sor corstant |
tiew
b For et Remow k|
Errpty detaction

Now, these are the different kinds of reference mechanism accounting mechanism that you
could have, this is like this is the object that you are pointing to. There is a separate object
called is a counting counter object, which could be allocated on the heap, which is keeping

the count and every smart pointer has a pointer to the object and a pointer to this count. So, if

you have to do any check, if you are created, then you have to go and increment this if you
are the smart pointer is getting destroyed, you have to destroy this and if you have to access

then you simply dereference these links, simple.

(Refer Slide Time: 33:02)

Qs te . L P

.r‘" ‘ L B B
iﬁi Ownership Policy: Exclusive and Shared

L~ Extra indirechion & Fon-mnnive cosrter
P N

v (£ = v y../;*\.
e _ \

Eatrs poter & . } | J-

000 (traNve coaniey

W
./| ——
< v

Reference lahing

ot) |
Vs
brirusiee B |:‘._r/

@ Noo-Irtrmve Casrtn ® Nendtrinke Coont ® Relererce Linkig

0 Add. couet pir par O AdEl aare pUr e Ooertwad of tvo 203! piny
st ptr Dt 208 2ctass Wevel means sower spied Deabbyp-liaked st Sor constant |

tiew

For Apperd, Roovowe b
Ermpty detaction

, 9 Irtrosive Counter

O Mot cptimized RC smart ptr

© Connct work for an abeady eainting desige
© Used b Component Object Model (COM

Now, the other way could be that instead of having the pointee in every smart pointer, you
could have that in this counting object itself. So, that is a counter and this so every one has

now, just one pointer, so you save on space.

But now, to get to the object you have to dereference twice or you could the most efficient is
if you can keep it as a part of the object itself, counter is a part of the object itself, in which
case you just have to dereference in one more raw over it. But the catch is if it has to be a part
of the object, then it will not work for the existing projects because the objects are already

there. So, it is a developer who will have to provide this.

So, only in projects, which are closely managed by a company like the windows COM
objects, Component Object Model from Microsoft, they use this kind of a model, but in
general this cannot be used, otherwise you could link the references.

(Refer Slide Time: 34:14)

%" Module S ’
tld: Module Summary
==

o Revisited Raw Pounters and discussed how to deal with the objects through raw pointer

¢ Introduced Smart pointers with typical mterface and use
o Introdoced some of the policies for smart ponter

o Storage Policles
¢ Ownership Policies

Pugrommng » Mhedbes Fa®i Mpem L

So, these are the different test strategies by which the shared ownership policy can be
implemented. So, to summarize, we have visited the raw pointers and discussed how to deal
with objects through raw pointers. And we have introduced smart pointers with typical
interface and use and we have discussed policies of storage and ownership policies, we have
discussed the basic exclusive and shared ownership, but there are more to add to this, which
we will do in the next module. Thank you very much for your attention. See you in the next

module.

