Programming in Modern C++
Professor. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Tutorial 11
Compatibility of C and C++: Part 1: Significant Features

(Refer Slide Time: 00:43)

Programming in Modern C++

Tutorial T11: Compatibility of C and C+-+: Part 1: Significant Features

Partha Pratim Das

Department of Computer Science and Engineering
Indlan Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url’s in this module have been accessed in September, 2021 and found to be functional

Welcome to Programming in Modern C++. | am going to discuss a new aspect in terms of C and
C++, the sister languages, in a two part tutorial. This is Tutorial 11, which will be the first part of
it. So, we will discuss particularly as to what is, how far C and C++ are actually compatible and

we will show you some of the significant features which actually differ between them.

(Refer Slide Time: 00:54)

@ Tutorial Objectives

o We often say that “C is a subset of C+-+". It is far from truth. There are various

intra-dialect incompatibilities in C (C89, €99, C11), in C4-+4 (C++03, C4+411,
Lol C+4+414, C++17, ...), and inter-dialect incompatibilities across languages. We need to

understand these differences and their effect in the programs we write

o We take a look at the C/C++ communities and consider views of different sections of
communities to understand why we need the compatibility - at least, the clear
understanding for it

o We discuss the major compatibility issues between C and C++. To keep the discussion
manageable, we primarily focus between C99 and C++11

o We also discuss the workarounds to write more compatible code between C and C++

So, we often say that C is a subset of C++. It is a loose statement and it is far from truth. There
are various intra-dialect incompatibilities that is different versions of C or between versions of
C++ have incompatibility. It is not only that a version may have a new feature, even the earlier
feature may behave differently and certainly there are inter dialect incompatibilities across the
language. So, you have some version of C and some version of C++. You are trying to mix them,

build them together and so on you may be in for certain surprise.

So, we take a look at C/C++ communities, because the communities are not necessarily
independent. There is a common community and there is a need to understand how much they
are compatible, which part is compatible and which part is not. So that you cannot, you do not
get into a lot of surprise. Since there could be several variations of compatibility discussions here
I will focus on the two most popular dialects that is C99 for C and C++11 for C++ and for, in
cases of, certain cases of incompatibility, we will also discuss about the workarounds. So, that is

what we want to achieve in this tutorial and in the next.

(Refer Slide Time: 02:29)

Eﬁ] Tutorial Outline

So, this is the key paths.

(Refer Slide Time: 02:37)

Why is Compatibility of C and C++ important?

Source: The €/C++ Users Jomnal ful-Asg-Sep. 2003 Accewsed 1550921

o The C and C++ programming languages are closely related but have many significant differences

¢ There is no C/C++ language, but there is a C/C++ community. Millions of programmers and
organization who use C and/or C++ form the community comprising three major groups:

0 Programmers who use C only: Especially the embedded systems community. Many programmers
working with C programs that never call a C+4 library. However, most (7) C programmers
occasionally use C++ directly and many rely on C++ libraries, Hence, the C programmer must bef
aware of C++ in the same way as a C++ programmer must be aware of C

© Programmers who use C++ only. Is it possible? Most programmers would need to call a C library.
Hence, the programmer needs to understand the constructs in its header files - use of malloc()
rather than new, the use of arrays rather than C++ standard library containers, and the absence of
exception handling. So all C4++ programmers are C programmers

0 Programmers who use both C and C++

o Compatibility maximizes the community of contributors, Each dialect and incompatibility limits the

0 market for vendors/suppliers/builders
0 set of libraries and tools for users - single product (IDE, compiler, analyzer, etc.) for both languages
0 set of collaborators (suitable employees, students, consultants, experts, etc.) for projects

So, first let us ask us to why is compatibility important. Now, C and C++ as languages are
closely related. |1 mean, to the extent that we often call them a C/C++. There is no language as
C/C++. Itis either C or it is C++. But there are many significant differences. So, though there is
no language as C/C++, but there is C/C++ community, the community of developers, thousands

of them, probably lakhs of them, who program in C as well as C++ in different extents.

So, we can broadly categorize them into three groups. So, as you mature you will also fall into
one of these groups. One is programmers who use C only. There is a large group of programmers
who use only C, primarily the embedded systems community and they would probably never call
a C++ library. But it is difficult to survive that way, because as C++ has a lot of wealth of code,
there is certain wealth of code in C, I mean, C has a lot of wealth of code. Similarly, C++ has
also built a lot of valuable code which may benefit a C programmer. But they are they are

predominantly C minded programmers and want to focus on that.

The programmers who use C++ only, several of them different systems programmer or complex
system developers and so on, naturally they cannot think that they will not know or master C,
because of all the overlap and common C features being available in C++ and so on so they have
to be very careful as to the part of C in C++, does it behave the same way or behaves the C++

way and so on.

And certainly there is a big third community which who use C and C++ both seamlessly. So,

compatibility will maximize the community of builders. If we can more and more we can make

codes compatible, then we will have more users for that, we will have more market for the
libraries, we will have better set of tools, more set of collaborators and so on. So, for these

reasons, it is very important to have compatible.

(Refer Slide Time: 05:14)

o Bjarne Stroustrup, the creator of C++, has suggested that the incompatibilities between C an
C++ should be reduced as much as possible in order to maximize interoperability between thi
two languages

o Others argue that C and C++ are two different languages - compatibility between them is
useful but not vital; and efforts to reduce incompatibility should not hinder improvement of
each language in isolation

o (99 “endorse[d] the principle of maintaining the largest common subset" between C and C++
“while maintaining a distinction between them and allowing them to evolve separately’, and
stated that the authors were “content to let C++ be the big and ambitious language”

o Several additions of C99 are not supported in the current C++ standard or conflicted with
C++ features, such as variable-length arrays, native complex number types and the restrict
type qualifier

® On the other hand, C99 reduced some other incompatibilities compared with C89 by
incorporating C+-+ features such as // comments and mixed declarations and code

So, it has always been our vision that C++ should be as compatible to C as possible. And
Professor Bjarne Stroustrup the creator suggests that the incompatibilities between C and C++
should be reduced as much as possible in order to maximize interoperability between the two

languages, but still there is, there are differences.

Of course, there is a counter view to this who think that there are different languages and
compatibility between them is useful, but not vital, because each of these language has its own
philosophy and the more you make them compatible forcefully, then their philosophy gets
compromised and so on. So, there have been different such views and also the support of
different dialects of C in the corresponding dialect of C++ has not been uniform. So, it is
important to understand what these are.

(Refer Slide Time: 06:22)

\/('.» 'j ('«)«)/

Feature compatibility between C+-+98, C89, and C99. “There are features fn all 7 areas”
(B. Stroustr p. 2002

Compatibility of C and C++

Source Accesed 15521

So, just to give you an idea, there is a Venn diagram of features if. So, C90, C89 that is our
oldest standard as you have known, C99 is the most commonly used standard and C++ let us
take it as C++98, C++03. If you take these three dialects and draw this VVenn diagram, you get 7,
1,2, 3,4,5, 6,7, 7 different, and interestingly there is some feature which fall in this category

that is there are features which are between say these and have compatibility issues.

(Refer Slide Time: 07:21)

o Cis not a subset of C+-+, and nontrivial C programs will not compile as C++ code
without change

o Likewise, C++ introduces many features that are not available in C and in practice
almost all code written in C++ is not conforming C code

o Here, we focus on differences that cause conforming C code to be ill-formed C+4+
code, or to be conforming / well-formed in both languages but to behave
differently in C and C+4+

o We take following approach for the discussions:

o To explain the compatibility, incompatibility and work-around in an understandable way, we
write the same code in main.c and main.cpp and compile with gec to get the language
specific behavior T =

o We also use dialect specific -std flags wherever relevant, Most comparisons are done with
respect to €99 and C++117

o We present the compiler messages and / or output to elucidate the effects

o We present a summary of the compatibility issues at the end in comparative tabular form

Programming In Modern €4+ Parths Pratim Do n

So, let us look at these issues, some of these issues one by one, because C++ is not a subset of, C

is not a subset of C++. So, the way we will illustrate this is we will normally try to write the

same code in C file as well as C++ file. So, main.c and main.cpp and see what their behavior is
we will use the same gcc compiler and we will use the -std flag if we want a particular dialect
and see the difference in the compilation time behavior, in the runtime behavior and so on to
understand the, obviously, you can you can read up, the standard the book and all that and know
the differences and so on, but I prefer to do it in this hands on way because then we do not need

to remember.

You just know that this is, this way | can write the code, compile and get to see what how it is
behaving. This finally is engineering. So, the more you can it can do a learn by actually building
and executing code is what makes things easier, because you do not have to remember horde of
rules written in the books and the blogs and so on.

(Refer Slide Time: 08:40)

o One commonly encountered difference is C being more weakly-typed regarding pointers

o Specifically, C allows a void# pointer to be assigned to any pointer type without a cast, while C+4
does not e

o This idiom appears often in C code using malloc memory allocation, or in the passing of context
pointers to the POSIX pthreads API, and other frameworks involving callbacks

o For example, the following is valid in C but not C4-+

or similarly.
int *) = malloc(5 * sizeof *f); /+
J(SMaLioct0 8w aedt'$)
In order to make the code compile as both C and C+4+, one must use an explicit cast, as follows (with
some caveats in both languages)

void eptr;
int of = (int e)ptr;
T R
int *) =(int *)malloc(5 * sizeof +j);
x e

So, the basic issue between C and C++ is C is weakly typed. C is not very strong. C has types,
but it is not very strong about that. And one major thing happens with void star. For example, in
C any pointer which is void* can be seamlessly cast, implicitly cast to any other point. This is
valid in C. So, this was a void* pointer and you have used that to initialize a int* pointer. So,

after you do this, it becomes an int star pointer, but this is just allowed.

Similarly, for malloc you can do this, but these things are not allowed in C++. Unless you do an
explicit cast, void* will not be allowed to be implicitly converted to any other pointer type in

C++ you need to explicitly write this. So, this is a first and very commonly used feature

everywhere that we use in different in malloc in the context of say POSIX thread library, in

different frameworks of callback and so on, like. So, we will, this is what shown.

(Refer Slide Time: 10:08)

o C++ is also more strict than C about pointer assignments that discard a const qualifier. For example!

assigni i

gning a const inte valuc&(/odn int* variable ,’1)

int main() { const inte p « 0 —*ﬁ/ .

inte q = p; // const qualifier being discarded /

| W '
In C++4, this is invalid and generates a compiler error (unless an explicit typecast is used), while in C
this is allowed (although many compilers emit a warning)

’ gec :.L\ﬁ.CPP sain.c

main.cpp:3:14: emor: invalid conversion from 'const inte' to ‘inte’
inte q = p;

main.c:3:14: waming: initialization discards 'comst' qualifier from pointer target type

ints q = p;
® In C4-4 a const variable must be initialized; in C this is not necessary. For
int main() { const int { » §;
const int J; // const variable not initialized
}

$ gee main.cpp main.¢

main.cpp:12:15: error: uninitialized const 'j'
const int j;

Progsamming In Moden 44 Partha Pration Do mw &

o C++ is also more strict than C about pointer assignments that discard a const qualifier. For example!
assigning a const int* value to an int# variable
int main() { const inte p « 0;
inte q = p; // const qualifier being discarded

}
In C++, this is invalid and generates a compiler error (unless an explicit typecast is used), while in C
this is allowed (although many compilers emit a warning)

$ gee main.cpp safn.c

main.cpp:3:14: emor: invalid conversion from ’'const inte' to 'inte’
—

inte q = p;

main,c:3:14: waming: initialization discards 'const' qualifier from pointer target type
o
inte q = p;
® In C4+4 a const variable must be initialized; in C this is not necessary. For
int main() { const int { = 5;
const int j: // const variable not initialized
} -_—
$ gee main.cpp main.c

main.cpp:12:16: error: uninitialized const 'j’
const int);

Programming In Modern €4+ Partha Pratim Do o &

Second is the use of const. C++ is lot more strict in its use of const. So, suppose you have a
pointer to a const data, and you use that pointer to initialize a non-const, pointer to a non-const
data. Now, this, as we have learned is dangerous, because with this I can actually violate the
original rule because | can do *q and change that data which will actually change the value that p
is pointing to. But C does allow you to silently discard the const qualifier, which C++ will not

allow you to do.

So, if you write this code and you compile this with C and C++ both, you will see that C part will
just go with, giving me a warning that you are discarding the const, but it will compile. C++ will
give you an error, because this is not valid in C++. C++ is more strict in terms of the type.
Another in terms of const, we learned that const variable will always have to be initialized. Rule
number one we learned from the very beginning, but not in C. In C, you can write a const like
this, where it does not have any initialization. Obviously, if you compile it in C++, it is an error,

because uninitialized constants are not allowed.

So, you can see that the first thing that we have to keep in mind is C++ is quite strict about types
and every time very few things will be done implicitly. And that too is done implicitly because it
has to support certain big chunks of code from C without much changes. But C will, C++ will
always tell you that if you had changing a type, please be explicit, use a cast and do that, do not

do it silently.

(Refer Slide Time: 12:27)

o C4+ changes some C standard library functions to add additional overloaded functions with const typl
qualifiers, for example, consider strchr () function in string.h in C and cstring in C++

/ string.h

char sstrchr(const char sstr, int character)
e i——
nst char ¢ str, int character);

char estrchr (char ¢ str, int character);
So when a C file 1s compiled with C++ compiler different calls to strchr() may bind to different
overloads in C++ S
o C4-+ is also more strict in conversions to enums: ints cannot be implicitly converted to enuas as in C

enum veek { Mon, Tue, Wed, Thur, Fri, Sat, Sun };
day

o Also, Enumeration constants (enus enumerators) are always of type int in C, whereas they are distinct
types in C++ and may have a size different from that of int

Programeing In Modem €+ Partha Pration D mn

Compatibility of C and C++: string.h and enum

i

o C+4+ changes some C standard library functions to add additional overloaded functions with const ty,
qualifiers, for example, consider strchr () function in string.h in C and cstring in C+4+4

// string.h

char sstrchr(const char estr, int character)

const sstrchr(const char ¢ str, int character);
char sstrchr (char ¢ str, int character);
So when a C file is compiled with C-+-+ compiler different calls to strchr() may bind to different
overloads in C++
o C4+ is also more strict in conversions to enuns: ints cannot be implicitly converted to enuss as in C

enum veek { Mon, Tue, Wed, Thur, Fri, Sat, Sun }; v’

$ gee main.c main,cpp

main.cpp:23:11: eror: invalid conversion from 'int’ to 'veek’
—
day = dayindex;

o Also, Enumeration constants (enus enumerators) are always of type int in C, whereas they are distinct
types in C++ and may have a size different from that of int

o
Programming In Modern (.4 Parths Pration D mn M

A
o C+4+ changes some C standard library functions to add additional overloaded functions with const ty,
qualifiers, for example, consider strchr () function in string.h in C and cstring in C++

r(const char estr, int character)

char sstrchr (char ¢ str, int character);
So when a C file is compiled with C-++4 compiler different calls to strchr() may bind to different
overloads in C++
o Ci isalso nlorg;tric in conversions to enums: ints cannot be implicitly converted to enuss as in C
enum veek { Mon, Tue, Wed, Thur, Fri, Sat, Sun };
int sain() { enua v day

int dayindex = 2;
day = dayindex;

}
§ gee main.c main.cpp

main.cpp:23:11: emor: invalid conversion from 'int’ to 'veek'
day = dayindex;
o Also, Enumeration constants (enus enumerators) are always of type int in C, whereas they are distinct
types in C+4-+ and may have a size different from that of int R

pAdadaR-AN

l
Programming In Modern €4+ Parths Pration D mn N

Now, let us say that compatibility of string.h and enum, string.h is header you know. So, this is
the string.h in C standard library. If you open the corresponding, we said that the corresponding
standard library component for string.h is cstring.h, put a ¢ in the beginning cstring. But if you
actually open the cstring header file, you will find that it has an extra function for, I mean, almost
all string function it is there too. So, here if you see the difference is in C, this returns a pointer to

character and takes a pointer to constant character.

In C++, there are two, one, it takes a pointer to constant character and returns the same type.
Here it takes a pointer to character and returns the same type. So, when you actually call it from

the C perspective, this function will get called, because whether the pointer is const or non-const,

it can always be treated as a pointer to a constant data. But the fact that you have this tells you
that C++ does provide an overloading in terms of even basic standard library functions that exist
in the string.h and C++ does that to make sure that its whole logical paradigm of consciousness

and development and protection of data can be propagated all across.

So, in C++ the call to strchr will bind to a different function than what it will bind in C. So there
is a significant difference in that and this is just kind of an example. Similar differences exhibit at
other places in the standard library as well. Very interesting is a case of enum. Suppose you have
an enum and in C we say that enum is nothing but a subtype of int. So, you can treat take an int
and implicitly convert it to enum. So, | can say that day is a variable of type enum week, so
which means it has these seven possible values that it can take. Then I define an integer which is

2 and | make this assignment. So, this side is an integer and this side is an enum.

Now, this C allows this implicit conversion. C++ gives you an error. The reason C++ gives you
an error is enum is not a subtype of int in C++. Enum is a different type in C++. So, it cannot just
as a subtype here, you can seamlessly convert implicitly but being a different type it needs
explicit conversion. Also the enum constants like all these different seven constants here, these
constants are of type int in C, whereas they are distinct types in C++ and may have a different

size from int.

For example, if there are seven, it could be they are presented as 3 bits which gives you eight
options, not a whole of a 32 bit or 64 bit integer. So, because of this differences, enum will also
have to be carefully treated between C and C++. These are very common things.

(Refer Slide Time: 16:39)

. . o) g . . . v
o C allows for multiple tentative definitions of a single global variable in a single translation unit, which
disallowed fs/ﬁn One Definition Rule (ODR) violation in C++
int N;
fnt N = 10;

$ gee main.c main.cpp
main.cppid6:5: orror int N

int N = 10;

:«‘s:s; note: 'int ¥
RSl SRR e

o C allows declaring a new type with the same name as an existing struct, union or enum which is not
allowed in C4+, as in C struct, union or enum types must be indicated as such whenever the type is
referenced whereas in C++ all declarations of such types carry the typedef implicitly

enum BOOL { FALSE, TRUE };
typedef struct _BOOL { it b; } BOOL;

$ gee sain.c main.cpp
main.cpp:53:33: error typedef struct _BOOL BOOL
typedef struct _BOOL { int b; } BOOL;

main, cpp:62:6: note enua BOOL
enua BOOL { FALSE, TRUE };

0 o — q . . . (Y
o C allows for multiple tentative definitions of a single global variable in a single translation unit, which
disallowed as an One Definition Rule (ODR) violation in C+-+
int N;
int N = 10;

$ gee main.c main.cpp
main.cppi46:5: orror int N
int N = 10;

main,cppid5:5: note: 'int X
int N;

o Callows declaring a new type with the same name as an existing struct, union or enum which is not
allowed in C4+, as in C struct, union or enum types must be indicated as such whenever the type is
referenced whereas in C++ all dyhmions of such types carry the typedef implicitly

enum BOOL { FALSE, TRUE };
typedef struct _BOOL { .‘St__b_' } BOOL;

$ gee main.c main.cpp

main.cpp:63:33: ermor typedef struct BOOL BOOL
typedef struct BOOL{ Int b; } BOOL;

——

—
main, cpp:52:6: note enua BOOL

enum BOOL { FALSE, TRUE };

Programming In Modern G + Partha Pratin D mi

Then C++ has one definition rule that you can have only one definition of a variable, you cannot
have multiple. So, in C, you can write say a static variable int n and then later you can write int n
initialized 10. In C, it is fine. But in C++, this is an error. When it counts as the second one, it
says it is a redefinition. n is previously declared already in in here. One definition rule excludes

that. One definition rule excludes the redefinition of the new type by the same name.

For example, in C, you can define a enum bool, say my enum bool is false, true. And you can
take make a structure say _bool having a data member b and give it a typedef it to bool. In C, this

is permitted. So, but you are actually reusing the name, same name. In C++ this will not be

permitted. In C++ it will say conflicting declaration here. Previous declaration was enum here.
So, this just | took just two different types of examples, but it all comes under the ODR or one

definition rule of C++ that in C++ you can have only one definition of a variable or a type and
trying to redefine is always an error. In C it is not always so.

(Refer Slide Time: 18:28)

Compatibility of C and C++: void Parameter

o In C, a function prototype without parameters, for example, int foo() ;, implies that the paramegers
are unspecified. Therefore, it is legal to call such a function with one or more arguments, like £00(0)
® In contrast, in C44 a function prototype without arguments means that the function takes no
arguments, and calling such a function with arguments is ill-formed
o In C, declare a function taking no argument by using void, as in int !oo() ;» which is also vali
in C4+4. Empty function prototypes are a deprecated Teature in as they were in C89)
int foo(); int bar(void); O’)
int main() { foo(0); bar(0); } S@\)
$ gee main.c main.cpp '\’\
main.c:42:22: ervor t
int main() { f0o(0); bar(0); }

bar

main.c:41:16: note int foo(); int bar(void);

main.cpp:60:19: eror
int main() { f0o(0); bar(0); }

int foo()

main, cppi68:5: note int foo(); int bar(void);

main,cpp:59:27: error

int bar()
int main() { foo(0); bar(0); }

main.cpp:68:16: note int foo(); int bar(void);

Parths Pratios Dy

o In C, a function prototype without parameters, for example, int foo();, implies that the parameters 4
are unspecified. Therefore, it is legal to call such a function with one or more arguments, like foo(0)

o |n contrast, in C4+ a function prototype without arguments means that the function takes no

arguments, and calling such a function with arguments is ill-formed -
o In C, declare a function taking no argument by using void, as in int foo(void);, which is also vali
in C44. Empty funclimy«o(olypcs are a deprecated feature in C99 (as they were in C89)
int fo int bar(void); / N
Tnt saint) { foo(0); bar(0); }
$ gee main.¢
main.c:42:22:
int main() { f0o(0); bar(0); }

e

bar

main.c:41:16; note int foo(); int bar(void);
— e,

main.cpp:50:19: error

int main() { f0o(0); bar(0); }

—

int foo()
sain, cpp:68:6: note int foo(); int bar(veid);

main.cpp:59:27: error
int main() { foo(0); bar(0); }
T ———

int bar()

main, cpp:68:16: note int foo(); int bar(void);

Parths Pratin Do 1

Now, how do you treat void as a parameter. Suppose in C you provide a function prototype as int
foo, no parameter. Now, this implies that parameters are unspecified. Whereas when you write it
in parameters are unspecified. When you create the same signature in C++, it means that it takes

no arguments. So, in C, if you have declared something as int foo without parameter, as in here,

you can call it as foo(0), because you said it is unspecified. So, you can call it with any number
of parameters. In C++, what you meant that it takes no parameters. So this calling it as foo(0) is

actually a violation of the signature that you have. So, that is a subtle difference.

So, in C if you want to declare a function which is kind of equivalent to C++ no argument, you
have to use argument void. So it says the same thing in a little roundabout way. All that it says
that it takes a parameter of type void which means that it takes a no parameter, but it is specified.

It takes a no parameter. You saying it in this way. This is void type.

Now, you cannot call, now if you call foo(0), this is an error in C as well. So, this is, you can see
that when you get into mixing, porting and all that these kinds of things will cause pain of
compatibility, because if you have these two declarations and you have a main which calls both
of these functions with 0, a parameter 0, then obviously foo(0) is in terms of C it is fine, because

it is unspecified. bar(0) is not because it is specified that you will not have a parameter.

And so, this is, in C++, foo(0) is not possible, because you have 0 number of parameters
specified. Similarly, bar(0) is also not possible because you have said it is void which also means
no parameters. So, this is the, so you can see that the same code you compile with two different
compilers you will have different compile time behavior and these are the typical compatibility

issues you will face.

(Refer Slide Time: 21:29)

¢ n both C and C++, one can define nested struct types, but the scope is interpreted differently

0 In C++, a nested struct is defined only within the scope / namespace of the outer struct
O In C the inner struct is also defined outside the outer struct

ad
ster / o ﬁ“ﬁ\
Inner 90} $

int 1}

Nested structure you will understand from your discussions on the namespace that | can have a
structure outer and inside that | have a structure inner. In outer I can refer to in C and C++ in the
same way. | can in C, I can refer to inner directly, because every name in C is global. So, if not
defined C++ that if it is C inner. But in C++ | cannot refer to inner directly, because the every

struct is a namespace.

So, the actual name of this inner is not inner. It is outer::inner. So, you can see the difference
between C and C++ in case of nested structure. It looks something, | mean, there is no C++
feature apparently here, but the interpretations are very different. And therefore, you will have

incompatibility between them.

(Refer Slide Time: 22:36)

@ Compatibility of C and C++: Variable Length Array (VLA)

o Variable Length Arrays (VLA) is a feature where we can allocate an auto array (on stack) of variable

size. C supports variable sized arrays from C99 standard

o But, in C++ standard (till C4-+11) there was no concept of VLA, According to the C++11 standard 8

array size 15 a constant-expression In C++14 mentions array size as 3 simplf- expression (not

constant-expression)
#ifndef __cplusplus
#include <stdio.h>

int add(int x, int g[s]) return add(n, vals);

int add(int x, int a[l)); vals
felse o add()
sinclude <cotdio> }
using namespace std; int main() { int n « §;
printf(*Result = Jd", set_and_add(n));
int add(int x, int afl]);) S———
fendif int add(int n, int a]) { int sus « 0;
for Tint 4 = 0; § < n; ++4) sum += aft);
return sus;

|}
@ The above code uses VLA (iat vals{n])) in function set.and.add. So any size (bounded by a compiler-specified
maximum) can be passed to it
® VLA may lead to possibly non-compile time sizeof operator

Programmeng in Modern (Parths Pratios Dy s 8

Variable length array is a well talked of feature in C where you can pass a array without any,
without a fixed size and you can deal with that. So, this is the way you can say | have a variable
length array you can also say this. Now, here in this function set and add | have declared this
where n is a parameter. This is a variable length array which is available in C. And so I can, from
the main | can do set and add for n that keeps an appropriate size of the vals array as an
automatic variable during the set add function call and from that | use the function add which
takes this array and does addition.

So, this is a feature which is available in C. In C++ standard till C++11 there is no concept of
variable length array. In, up to C++11 array size the constant expression. C++14 is introducing
this as a simple expression, not a constant expression. We will learn more about that in that part.
But what | wanted to highlight is if you are using any kind of, any kind of VLA in C that will not
be compatible with the C++.

(Refer Slide Time: 24:28)

@ Compatibility of C and C++: Flexible Array Member (FAM)

o The last member of a C99 structure type with more than one member may be a Flexible Array
Member (FAM), which takes the syntactic form of an array with unspecified length. This serves a
purpose similar to variable-length arrays

o VLAs cannot appear in type definitions, but has defined size (at runtime)
o FAMs have no defined size, but can appear in type definitions
0 1SO C4+4 has no such feature \/
o Here is an example of a FAM
struct vectord {
ghort len;

double arr();
—

struct
o Typically, such structures serve as the header in a larger, variable memory allocation
struct vectord evector = malloc(...);
vector->len =
for (dnt & = 0; 1 < vector=>len; i++)
vector-darr(i] = ...; double

Flexible array member is an extension of that where C allows that the last member of a struct
could be an array without specified dimension. So, it could be of any size. So, this is called a
flexible array member which becomes easy for use because you can get to know the actual data
requirement at the runtime and accordingly it will take care of the number of data you want to
put in of the appropriate type. But again this is a C only feature. ISO C++ has no such feature as
FAM. So, C++ does not even recognize this as a feature. You will have a severe incompatibility
for this.

(Refer Slide Time: 25:17)

o restrict keyword is mainly used in pointer declarations as a type qualifier for pointers

o It adds no functionality - only informs the compiler about an optimization
¢ When we use restrict with a pointer ptr, it tells the compiler that
t t, in other words, ter | t t. That is,
restrict keyword ther and the

o If a programmer uses restrict keyword and violate the above condition, the behavior is undefined
o restrict is supported from C99. It not supported by 1SO C4-+

#include <stdio.h>

void use(inte a, inte b, inte restrict ¢) {
TR S ——

int sain(void) { int a = 60, b = 60, ¢ = 70;
use(ka, kb, &e¢);
printf(*%d %d ¥%d", a, b, ¢);

Souce
Programming In Modern (4 Partha Pration Doy i W

restrict was provided in C++ to mean uniqueness of pointers. So, you say that a pointer is
restrict, which means you are trying to say that it points to an object which is not pointed to by
anyone else. If I say int* restrict c, then | am saying that c is a pointer to an object which is not
pointed to by anyone else. So, if it is not pointed to by anyone else, naturally, things become
much easier for the compiler, because it does not have to look at the possibility of that value

getting changed by someone else and so on.

So, restrictor was provided in C99. But somehow this has been a very well debated feature. And
so far ISO C++ does not support this restrict feature. Rather you can get the similar effect by
unique_ptr and those kinds of stuff that you get through functors, smart pointers and so on. But
this language built-in feature of restrict is not available in C++.

(Refer Slide Time: 26:40)

E@ Tutorial Summary

[

4

¢ We have understood why C and C++ incompatible across dialects in spite of C++ |
being an intended super-set of C -

o We studied specific incompatibilities over nearly two dozen features]

o We discussed some workarounds to write more compatible code between C and C++4

So, to summarize, this is not exhaustive. But in this part of the tutorial, | have tried to take you
through the fact that those C and C++ are very closely related. There are some marginal to
medium to severe incompatibility across dialects of C and C++ which need to be clearly
understood or at least studied when you want to do a mix of programs between C and C++ or

you are trying to migrate a simple C program into C++ and so on.

So, the major features we have discussed in the second part of this tutorial in tutorial 12. 1 will
present these and a number of minor features also in terms of a comparison table, which you can

be, 1 mean, it is a couple of pages of slides of comparison table which you can keep handy in

case you are into mixed language project or migration project which is very, very common in the
industry to have. Thank you very much. Try this out and see the difficulties for yourself, and see

you in the second part of this tutorial.

